
Universidade do Minho

Escola de Engenharia

Ph.D. Thesis

Embedding Attribute
Grammars and their Extensions

using Functional Zippers

Author:
Pedro Martins

Supervisor:
Prof. Dr. João Saraiva

Co-Supervisor:
Prof. Dr. João Paulo

Fernandes

2

Acknowledgments

I am writing this late at night. Every time I roll my eyes in either direction

they hurt, and I have long ago forgot about back pain and maintaining a

good posture. I am tired, stressed and slightly upset and worried. This is

exactly how I thought it would be. I will miss every small part of these past

four years.

I want to use this moment to show my gratitude to the people that in

many ways contributed to the work I am presenting here. I am doing it

without any particular order, as I honestly think I would not be capable of

finishing this without any of them.

I start by showing my gratitude to my supervisors, João Saraiva and João

Paulo. They have been with me for more than four years and yet, somehow,

they always had the confidence and the right words when I much needed

them. The moments I spent with them changed me in ways I simply cannot

find the words to describe.

Eric Van Wyk kindly accepted me during my stay in Minneapolis. His

commitment, knowledge and approach to research provided me with a very

valuable environment on which I could idealize and develop this work. More

than that, he and Peggy gave me such a warm welcome to the United States

that I will always remember the great moments we spent together.

Lúıs Florêncio and Cátia Silva played a big part in providing moral sup-

port, through humor and mature advising. Ironically, I think I could handle

myself without the latter, but never without the former.

I was lucky for having such an amazing environment as I worked in the

best office with the best people. Rui, Jorge, Faria, Alpuim, Cláudio, Tiago,

David, Sara, Jácome: you were the best lab and summer school mates I could

iii

iv

ask for.

My brother Lúıs was more than a brother, he was also my roommate

during all this time. This means he was the one that had to deal with all

the frustration and grumpyness of a grad student arriving home everyday.

Not an easy task, but a crucial one, and something I will forever be in his

debt for (when you read this man, this is NOT an excuse for not cleaning

the kitchen every once in a while!!).

Finally, I would like to thank my parents José Amaro and Maria Isabel.

Their education and support and love and hard work made everything pos-

sible, and no one deserves a bigger credit for the work presented here. This

work is something they achieved before I did, this is something that is theirs

before being mine, something they should feel proud of before I do. It is the

result of their dedication and parenting before being anything else.

Several institutions also contributed to this thesis in important ways.

This work was mainly supported by Fundação para a Ciência (FCT), by

the European Regional Development Fund (ERDF) through the Programme

Compete, by the MIT Portugal Program, a large-scale international collab-

oration involving MIT and government, academia, and industry in Portu-

gal, by the Luso-American Foundation (FLAD) and by the National Science

Foundation (NSF).

In particular, I received grants from the projects AMADEUS (PTD-

C/EIA/70271/2006), refa BI-1 PTDC/EIA/70271/2006; CROSS (FCOMP-

01-0124-FEDER-010049), refa BI3-2011 PTDC/EIA-CCO/108995/2008;

SAVED (MIT-PT/TS-ITS/0036/2008), FATBIT (FCOMP-01-0124-FEDER-

020532) and BEST CASE (NORTE-01-0124-FEDER-000058), refa

BIM-2013 BestCase RL3.2 UMINHO.

Abstract

Embedding Attribute Grammars and their
Extensions using Functional Zippers

Attribute grammars are a suitable formalism to express complex software lan-

guage analysis and manipulation algorithms, which rely on multiple traversals

of the underlying syntax tree. Attribute Grammars have been extended with

mechanisms such as references, higher order and circular attributes. Such ex-

tensions provide a powerful modular mechanism and allow the specification

of complex computations.

In this work we defined an elegant and simple, zipper-based embedding

of attribute grammars and their extensions as first class citizens. In this

setting, language specifications are defined as a set of independent, off-the-

shelf components that can easily be composed into a powerful, executable

language processor.

We have also developed techniques to describe automatic bidirectional

transformations between grammars. We define a method to define transfor-

mation specifications which, through our automatic mechanisms, are inverted

and expanded and generate attribute grammars that specify a bidirectional

environment.

We have implemented several real examples of language specification and

processing in our setting, some of which are presented in this work. We have

also developed and implemented a DSL using our technique for embedding

attribute grammars, which we have deployed in a web portal for software

analysis.

v

vi

Resumo

Gramáticas de Atributos e as suas
Extencões Embebidas em ”Zippers”

Funcionais

Gramáticas de atributos são um formalismo que permite exprimir algorit-

mos complexos de análise e transformação de programas, que tipicamente

requerem varias travessias às árvores abstractas que os representam. As

gramáticas de atributos foram estendidas com mecanismos que permitem

referências, ordem superior e circularidade em atributos. Estas extensões

permitem a implementação de mecanismos complexos e modulares de com-

putações em linguagens.

Neste trabalho embebemos gramáticas de atributos e as suas extensões

de forma elegante e simples, através de uma técnica chamada ”zippers”. Na

nossa técnica, especificações de linguagens são definidas com um conjunto

de componentes independentes de primeira ordem, que podem ser facilmente

compostos para formar poderosos ambientes de processamento de linguagens.

Também desenvolvemos técnicas que descrevem transformações bidire-

cionais entre gramáticas. Definimos métodos de especificar transformações

que, através de mecanismos completamente automáticos, são invertidas e es-

tendidas e geram gramáticas de atributos que especificam o nosso ambiente

bidirecional.

Com esta técnica foram implementados vários exemplos de especificação

e processamento de linguagens, alguns dos quais estão definidos e explicados

neste documento. Da mesma forma, criamos e desenvolvemos uma linguagem

de domı́nio especifico usando a nossa técnica; linguagem essa que integramos

vii

viii

num portal que permite a criação de análises de programas completamente

configurada para servir os requisitos particulares de cada utilizador.

Contents

1 Introduction 1

1.1 Languages Design and Implementation 3

1.2 Attribute Grammars . 5

1.3 Embedding Attribute Grammars 7

1.4 Multiple Traversal Algorithms 9

1.4.1 Strict Algorithms . 13

1.4.2 Lazy Algorithms . 18

1.5 Bidirectional Attribute Grammars 21

1.6 Overview . 23

1.6.1 Main Publications . 24

1.6.2 Software Prototypes 26

1.6.3 Other Publications . 26

1.7 Structure of the Thesis . 27

2 Definitions and Notations 29

2.1 Introduction . 29

2.2 Context-free Grammars . 30

2.2.1 Concrete and Abstract Grammars 32

2.3 Context-free Grammar Specification 35

2.4 Attribute Grammars . 39

2.4.1 Attributed and Decorated Trees 43

2.4.2 Circularities in Attribute Grammars 44

2.5 Attribute Grammar Specification 45

2.5.1 Capturing Variable Declarations 47

ix

x

2.5.2 Distributing Variable Declarations 49

2.5.3 Calculating Invalid Identifiers 50

2.5.4 Decorated Tree . 52

2.6 Conclusions . 55

3 Embedding Attribute Grammars 57

3.1 Introduction . 57

3.2 Functional Zippers . 59

3.2.1 Generic Zippers . 63

3.3 LET as an Embedded Attribute Grammar 67

3.4 Functional Embeddings of Attribute Grammars 71

3.4.1 Zipper-based approaches 71

3.4.2 Non-zipper-based approaches 72

3.5 Conclusion . 73

4 Reference Attribute Grammars 75

4.1 Introduction . 75

4.2 Reference Attribute Grammars 76

4.2.1 Reference Attribute Grammars in JastAdd 77

4.3 Embedding Reference Attribute Grammars 81

4.4 Conclusions . 84

5 Circular Attribute Grammars 87

5.1 Introduction . 87

5.2 Circular Attribute Grammars 89

5.2.1 Circular Attribute Grammars in Kiama 92

5.3 Embedding Circular Attribute Grammars 94

5.4 Conclusions . 100

6 Higher Order Attribute Grammars 101

6.1 Introduction . 101

6.2 Higher Order Attribute Grammars 102

6.2.1 Higher Order Attribute Grammars in LRC 103

6.3 Embedding Higher Order Attribute Grammars 106

xi

6.3.1 Semantic Functions and Higher Order Attributes . . . 107

6.4 Conclusions . 111

7 Circular and Higher Order Attribute Grammars 113

7.1 Introduction . 113

7.2 A Symbol Table as an Higher Order Attribute 114

7.3 Circularity in Higher Order Attributes 120

7.4 Conclusions . 124

8 Bidirectional Attribute Grammars 125

8.1 Introduction . 125

8.1.1 Σ-Algebra . 129

8.2 Simple Transformations . 131

8.2.1 Specifying the Forward Transformation 132

8.2.1.1 Restrictions on the Forward Transformation . 134

8.2.1.2 Generating Attribute Grammar Equations . . 135

8.2.2 Generating the Backward Transformation 136

8.2.2.1 Inverting the Sort Map and Rewrite Rules . . 136

8.2.2.2 Extending the Rules 137

8.2.2.3 Generating Attribute Grammar Equations . . 138

8.3 Links Back: making use of the Original Source Term 139

8.3.1 Allowing Overlapping Rewrite Rules 141

8.4 Supporting Non-linear, Compound Rules and Partial Trans-

formations . 142

8.4.1 Non-linear, Compound Rule Specification 143

8.4.2 Inverting the Rewrite Rules 144

8.4.3 Generating Attribute Grammar Equations 145

8.5 Tree Repairs . 145

8.6 Embedding Bidirectional Attribute Grammars 148

8.7 Conclusions . 154

9 Tools 155

9.1 Introduction . 155

9.2 Embedding DSLs for Language Analysis 156

xii

9.2.1 Defining Combinators 158

9.2.2 Type Checking . 162

9.2.3 Script Generation . 163

9.2.4 Overview . 166

9.3 Portal . 166

9.4 Conclusions . 168

10 Conclusions 169

10.1 Processing LET . 171

10.2 Limitations of this Approach 172

10.2.1 References in HOAGs 172

10.2.2 Repetitive Attribute Evaluation 173

10.2.3 Language Extensions 174

10.3 Future Work . 174

Index 190

Acronyms

AG Attribute Grammar.

AST Abstract Syntax Tree.

BNF Backus Naur Form.

BX Bidirectional Transformation.

CAG Circular Attribute Grammar.

CFG Context-free Grammar.

CFL Context-free Language.

CST Concrete Syntax Tree.

DDSL Deep Domain-specific Language.

DSL Domain-specific Language.

EBNF Extended Backus Naur Form.

GHC Glasgow Haskell Compiler.

GPL General Purpose Language.

HOAG Higher Order Attribute Grammar.

OSS Open Source Software.

xiii

xiv

RAG Reference Attributed Grammar.

SDSL Shallow Domain-specific Language.

Chapter 1

Introduction

“Indeed, we are convinced that the style of programming with

attribute grammars helps the programmer to construct better func-

tional programs. Thus, the question that arises immediately is

whether it would be possible to incorporate the elegant style of

attribute grammars writing directly within a functional program-

ming language” - [Saraiva, 1999]

In a world so overwhelmed with machines and electronics, where com-

puters evolved from simple apparatus to crucial and permanent components

of our daily lives, we can not forget the way we use to communicate with

them. Nowadays, this communication is achieved through sentences (pro-

grams) written in a high level programming language. Indeed, programming

languages are artificial languages we have created to instruct a computer on

how to behave.

As the usage of computers became increasingly ubiquitous, programming

languages had to adapt to new domains. Nowadays, computer programs

range from tiny scripts written as a hobby by people which need simplicity,

to huge platforms written by hundreds of programmers that are comfortable

with considerable complexity.

Computer programs must evenly balance speed and efficiency in micro

controllers and in supercomputers. They can be written for a satellite where

software updates are extremely difficult, or for open source projects, where

1

2

supporting communities patch and improve them on a daily basis.

This heterogeneity, both in the scope and in the domain programming

languages were being used motivated the appearance of Domain-Specific Lan-

guages (DSL). Domain-specific languages are languages specialized in a par-

ticular application domain, which distinguishes them from General Purpose

Languages (GPL) such as Java or C because general purpose languages are

languages designed with broadly applicable domains and are used to solve a

wide range of problems. This means they sometimes lack specialized features

for a specific problem, or fail in providing an interface or a syntax related to

the particular problem we are handling.

A mathematician uses MATLAB for running a statistic simulation, an hard-

ware engineer uses Verilog to program an electronic chip, an accountant uses

a spreadsheet for implementing formulas for financial calculus or a database

manager uses MySQL to edit and retrieve information. Two of the most used

languages by web programmares are domain-specific: XML and HTML. In short,

each of them uses a domain-specific language because they are perfectly

suited for their specific needs.

A mathematician could use C instead of MATLAB, and so could an ac-

countant. And a database manager could use Java to access a database.

The problem is that the general purpose nature of these languages implies

considerable complexity and abstraction by the user, whereas with a domain-

specific language he has constructors and primitives whose sole purpose cor-

responds exactly to his needs. For example, MATLAB contains functions such

as annurate, which calculate a periodic interest rate. This is possible in C

or Java, but requires implementation and maintenance, whereas in MATLAB is

simply available for free.

With software systems being use in a growing number of devices and

application domains, such as hardware engineering, accounting or database

management, it is desirable to design and implement special purpose lan-

guages that are tailored to the their specific characteristics and necessities.

However, the design and implementation of a new programming language

from scratch can be costly, and there is the necessity of techniques that allow

an easy definition and implementation of new domain-specific languages.

3

In the next section we will talk about different techniques used to put

domain-specific languages into effect and make them usable.

1.1 Languages Design and Implementation

There are two methods for implementing a domain-specific language. On

one side, there is the traditional option of defining a custom syntax and

all the supporting machinery: parsers, interpreters, compilers, perhaps an

editor. This option has the advantage of allowing fine-tuning of the syntax

to closely resemble the primitives and constructs of the language, and editors

oriented for the language provide environments that simplify and speed up

implementations.

With a language-oriented environment, errors can be customized so they

represent the exact domain we are working in. For example, if we con-

sider the syntactic analysis of a language, parser generator systems like yacc

[Brown et al., 1992] or ANTLR [Parr, 2013] will provide the user with errors

directly related to the language being processed, such as badly defined lan-

guage grammars.

The problem with defining a language processor from scratch is that usu-

ally a big effort is required for implementing and maintaining all this ad-

ditional software. Moreover there will be a continuous necessity of these

resources, as improvements on the language mean improvements on the soft-

ware itself.

The other possibility for implementing a language is by embedding the

domain-specific language into a general-purpose one [Hudak, 1996], where

we try to retain as much as possible of the target language but raise the

level of abstraction to a specific domain. This means all the features of

the general-purpose language are still available, and the communities that

research the GPL are inadvertently also improving the features available

to the domain-specific language. Furthermore, a general-purpose language

already has optimized compilers and editors that we can use and are available

for free for our embedded domain-specific language.

Figure 1.1 shows the two different ways of implementing a DSL, with

4

Domain-Specific
Languages

Stand Alone
Domain-Specific

Languages

Embedded
Domain-Specific

Languages

Shallow
Embedded

Domain-Specific
Languages

Deeply
Embedded

Domain-Specific
Languages

Figure 1.1: Implementing DSLs.

more traditional approach on the left and the embedding on the right. When

embedding a language, two further techniques exist [Gill, 2014], which relate

to the semantic meaning of the DSL in the host language.

A language can be implemented using a shallow embedding. Here, the

shallow DSL (SDSL) is described in a way that represents a computation

that a value, which is the meaning of the language.

On the other side we have deep embedded DSLs (DDSL), where the

languages creates an abstract representation instead of a value. The resulting

structure can be further analyzed and computed or be the subject of further

transformations.

Regardless of the chosen strategy, processing a language traditionally

involves a series of steps, which can be roughly split in:

1. Performing lexical analysis, which implies converting the textual format

of the language into tokens, which are sequences of characters relevant

as a group;

2. Formalizing the structure of the language, where we syntactically define

the correctness of the language;

3. Formalizing the way the language behaves (the semantics), using infor-

mation from the previous steps.

5

One example of a formalism that allows the definition of these steps are

attribute grammars.

1.2 Attribute Grammars

Attribute Grammars (AGs) [Knuth, 1968] are a well-known and convenient

formalism not only for specifying the semantic analysis phase of a com-

piler but also to model complex multiple traversal algorithms. Indeed, AGs

have been used not only to specify real programming languages, for example

Haskell [Dijkstra et al., 2009], but also to specify sophisticated pretty print-

ing algorithms [Swierstra et al., 1999], deforestation techniques [Fernandes

and Saraiva, 2007], powerful type systems [Middelkoop et al., 2010], syn-

tax editors [Jourdan et al., 1990], programming environments [Kuiper and

Saraiva, 1998], visual languages [Kastens and Schmidt, 2002] or program

animations [Saraiva, 2002].

Attribute grammars have also proven to be a suitable formalism for the

design and implementation of both domain specific and general purpose lan-

guages, with powerful systems based on attribute grammars [Reps and Teitel-

baum, 1989; Jourdan et al., 1990; Kastens and Schmidt, 2002; Luković et al.,

2011] being constructed.

All these attribute grammars specify complex and large algorithms that

rely on multiple traversals over large tree-like data structures. To express

these algorithms in regular programming languages is difficult because they

rely on complex recursive patterns, and, most importantly, because there are

dependencies between values computed in one traversal and used in following

ones. In such cases, an explicit data structure has to be used to glue together

different traversal functions.

The original formulation of attribute grammars was improved through

various extensions, that improve their expressiveness and the scope of prob-

lems they can deal with. Higher-order AGs (HOAGs) [Vogt et al., 1989;

Saraiva and Swierstra, 2003] provide a modular extension to AGs in which

syntax trees can be stored as attribute values. Reference AGs (RAGs) [Hedin,

1999] allow the definition of references to remote parts of the tree, and, thus,

6

extend the traditional tree-based algorithms to graphs. Finally, Circular AGs

(CAGs) allow the definition of fix-point based algorithms.

More recently, new extensions and features have been defined for attribute

grammars, like forwarding attribute grammars [Van Wyk et al., 2002], mul-

tiple inheritance [Mernik et al., 2000, 2005], aspect oriented attribute gram-

mars [de Moor et al., 2000b] or remote attributes [Boyland, 2005].

Research in attribute grammars has proceeded primarily in two direc-

tions. Firstly, there are AG-based systems such as Silver [Van Wyk et al.,

2008], JastAdd [Ekman and Hedin, 2007], LRC [Kuiper and Saraiva, 1998] or

Eli [Gray et al., 1992]. These systems followed the traditional approach of

creating a stand-alone language, and they all have their own attribute evalu-

ator and AG interpretation engines. Other systems, such as UU-AG [Swierstra

et al., 2004] have a specific syntax but translate the code into a target lan-

guage (in this case, Haskell), where computations are performed using its

interpretors and compilers. They can be analyzed, reused and compiled in-

dependently.

Secondly, attribute grammars are embedded in regular programming lan-

guages with AG fragments as first-class values in the language. In the context

of attribute grammars, this idea has already been explored [de Moor et al.,

2000a; Sloane et al., 2010; Viera et al., 2009; Viera, 2013].

First class AGs provide a full component-based approach to AGs where

a language is specified/implemented as a set of reusable off-the-shelf compo-

nents. This means the implementations double as a typical program on the

target language, which can be reused, compiled, refactored and be integrated

in larger solutions.

Attribute grammars are a formalism with various notations. For exam-

ple, JastAdd has a notation similar to Java, LRC uses SSL [Reps and Teit-

elbaum, 1989], Silver contains its own notations. All of these systems are

themselves domain-specific languages, implemented and defined through em-

beddings and stand-alone mechanisms.

In this work, we will present attribute grammars as an embedded domain-

specific language.

7

1.3 Embedding Attribute Grammars

In this work we will present a technique for embedding AGs on a functional

setting. Our environment will support major AG extensions such as higher-

order, references or circularity, which are unavailable in other functional AG

embeddings.

By using an embedding approach there is no need to construct a large AG

(software) system to process, analyze and execute AG specifications. First

class AGs reuse for free the mechanisms provided by the host language as

much as possible, while increasing abstraction in the host language. Fur-

thermore, with this option, an entire infrastructure, including libraries and

language extensions, is readily available at a minimum cost. Also, the sup-

port and evolution of such infrastructure is not a concern.

Features such as parametric polymorphism, type inference, generalized

algebraic data-types or pattern-matching, among many others, are extremely

useful to the user but have to be designed and implemented, as was the case

with Silver [Kaminski and Van Wyk, 2012]. With this technique, all these

functional are available at no additional cost.

Together with the shallow embedding of attribute grammars in a func-

tional setting, we will also present a practical application of our work with a

deep embedded DSL. Throughout the next chapters, we will show how our

shallow embedding can be used to implement various language-processing

tasks.

We will present the embedding in the functional language Haskell [Jones

et al., 1999] because its strong type system provides generic mechanisms

that will be useful in the development of our embedding. Furthermore, this

language is widely used and well known, and there are several good books

[Hudak, 2000; Doets and van Eijck, 2004; O’Sullivan et al., 2008; Lipovaca,

2011; Mena, 2014] available for it.

We believe our approach provides a clear syntax which closely resembles

the target domain. This means a domain-specialist programmer does not

have to struggle to deal with the (potentially obscure) syntax of the functional

target language.

8

We also tuned the syntax provided by our embedding to avoid having

naive users invoking sophisticated and undesirable target language features

without being aware of it, simplifying its usage. This is important because

we have to use the target language interpreters and compilers, which means

errors in our embedded DSL will relate to the target language (in this case,

Haskell) and not to the DSL domain.

Our approach is favorable if we want to provide a DSL to a community

which is already focused on a functional language that can be used as a host,

as this option will provide them with extended and additional functionalities.

It is also useful to users which want some of the functionalities of a functional

setting but do not feel very comfortable with its syntax, as we provide a

language-oriented DSL embedding.

Another advantage of our approach is that we gain for free the advanced

characteristics of the target language. All of these features can be used

together with the DSL we will embed, to create a powerful programming

environment. It also means there is free access to development environments,

compilers and there is a huge community available to help in development

details and to continuously improve the existing features. We do not rely on

the availability (which needs to be continuous) of the time and resources to

to create a specific, stand-alone environment.

For the particular examples we will provide, which are written in Haskell,

these advantages mean users have at their disposal features such as lazy

evaluation, pattern matching, list comprehension, type classes or a strong

type system, and environments such eclipse plug-ins to aid in development.

These are specific advantages of the language we are using as target, and

with our technique applied in other functional languages, some nonexistent

features become available while others are lost.

Attribute grammars in our setting provide a method to implement com-

plicated algorithms in a functional setting, but there are more alternatives

to do so, as we will see in the next section.

9

1.4 Multiple Traversal Algorithms

As we mention in Section 1.2, AGs are a powerful formalism to express

multiple traversal algorithms, like advanced pretty printing algorithms, type

systems, programming environments, etc. In this thesis we will use a simple,

but real example, to show the complex details involved when expressing such

algorithms in a (functional) programming language. Let us consider the

LET language, which represents the widely used let expressions in functional

languages like Haskell [Jones et al., 1999], ML [Milner et al., 1997] or Scala

[Odersky et al., 2008].

While being a concise example, the LET language holds central charac-

teristics of widely-used programming languages, such as a structured layout

and mandatory but unique declarations of names.

Programs in this language consist of instruction blocks, where each in-

struction declares a variable, assigns some value to the variable, which can

be constants or other variables, or defines a nested instruction block. A small

example of a program in this language is:

program = let y = 4

a = let w = 2

in x + y

in y + a

In order to represent programs in the LET language, we define the following

Haskell data-types:

data Root = Root Let

data Let = Let Decls Expr

data Decls = Cons String Expr Decls

| Empty

| NestedLet String Let Decls

data Expr = Const Integer

| Divide Expr Expr

| Minus Expr Expr

| Plus Expr Expr

10

| Times Expr Expr

| Var String

In this representation, program is defined as:

program = Let (Cons "y" (Const 4)

(NestedLet "a" (Let (Cons "w" (Const 2) (Empty))

(Plus (Var "x") (Var "y")))

Empty)

)

(Plus (Var "y") (Var "a"))

We wish to construct a program to deal with the scope rules of the LET

structured language. In a let expression an identifier may be declared at

most once, and identifier declaration is necessary.

In nested expressions, using identifiers declared in an outer expression is

allowed, and the definition of an identifier in a local scope hides the definition

of the same identifier in a global one.

In program we saw a simple example with a single error: the invalid use

of the not declared identifier x . Below, program ′ illustrates a more complex

situation where an inner declaration of y hides an outer one.

program ′ = let x = y

a = let y = 4

in y + w

x = 5

y = 6

in x + a

Programs such as program or program ′ describe the basic block-structure found

in many languages, with the peculiarity that no order is enforced about

where identifiers can be declared and used. This means that declarations of

identifiers may also occur after their first use.

According to the scope rules of the LET language, program ′ contains two

errors: a) at the outer block, the variable x has been declared twice, and b)

the use of the variable w , at the inner block, has no binding occurrence at

all.

11

program' = let x = y

 a = let y = 4

 in y + w

 x = 5

 y = 6

 in x + a

ERROR
[x, w]

[]

(a) Bottom-up strategy.

program' = let x = y

 a = let y = 4

 in y + w

 x = 5

 y = 6

 in x + a

ERROR

[w, x][]

(b) Top-down strategy.

Figure 1.2: Bottom-up vs top-down strategy. Observe that only the second
option detects duplicated declarations in the sequential order of the program.

We aim to develop a program that analyses LET programs and computes

a list containing the identifiers which do not obey the scope rules. In order

to make it easier to detect which identifiers are being incorrectly used in a

program, we require that the list of invalid identifiers follows the sequential

structure of the program. Thus, the semantic meaning of processing program ′

is [w , x] (see Figure 1.2 where this result is shown).

Because we allow use before declaration, a conventional implementation of

the required analysis leads to a program which traverses the abstract syntax

tree twice: once to accumulate the declarations of identifiers and construct an

environment, and again to check the uses of identifiers using the computed

environment. The uniqueness of names is detected in the first traversal:

for each newly encountered declaration we check whether the identifier has

already been declared. In this case an error is computed.

An algorithm for processing this language has to be designed in two

traversals:

1. On a first traversal, the algorithm has to collect the list of local def-

initions and, secondly, detect duplicate definitions from the collected

ones. Because we want to detect duplicate declarations only in the mo-

ment they are declared twice, we have to follow a top-down strategy, as

can be seen in Figure 1.2. A top-down strategy is usually implemented

by accumulating parameters in a functional programming [Bird, 1998].

This would be implemented with the function:

12

duplicate decls :: Let → Env

that takes a LET program and creates an environment.

2. On a second traversal, the algorithm has to use the list of definitions

from the previous step as the global environment, detect the use of non-

defined variables and finally combine the errors from both traversals.

This would be implemented with the function:

missing decls :: Let → Env → Errors

that takes a program and an environment and returns a list of errors.

A straightforward solution to implement name analysis on LET would be

as defined here by semantics:

semantics :: Let → Errors

semantics p = missing decls p (duplicate decls p)

The problem with this solution is that the errors computed on the first traver-

sal, with duplicate decls, are never carried to the second traversal and will not

appear in the final list of errors found.

To be able to compute the duplicated declarations of a block, the im-

plementation also has to explicitly pass the errors detected between the

two traversals of the program. As a consequence, a (intermediate) gluing

data structure has to be defined to convey information computed in the first

traversal to the second one. The need for explicitly defining and constructing

intermediate data structures is not specific of a functional implementation,

and in other programming paradigms such intermediate values are stored, as

side effects, in the abstract syntax trees. In this case, the abstract syntax

tree is the gluing data structure.

In all programming paradigms these gluing data structures make pro-

grams more complex to write, less concise and more difficult to be reused,

but note that is not only the computation of the list of errors or the addi-

tional data types that require additional work. The scheduling of the two

traversals is not straightforward either.

13

faulty = let a = z + 3

 c = let z = 4
 in z + b

 b = (c * 3)
 in (a + 7) * c

initial_Env = [a, c, b]
total_Env = [a, c, b, z]

initial_Env = []
total_Env = [a, c, b]

Figure 1.3: The value of the environment in different parts of a program.

As we can see in Figure 1.3, the initial environment of the nested block

is the total environment of its parent. This means that an outer block of

a program has to be completely traversed before starting the calculation of

the environment of an inner block. This is one characteristic of the language

that makes defining one algorithm for name analysis harder to implement.

Thus, the traversals of outer and inner let expressions are intermingled,

making it very complex to determine how to schedule the different traversals

in larger languages. An example of a very complex algorithms that schedules

a four traversal pretty printing algorithm is presented in [Swierstra et al.,

1999].

In the next section we present the full implementation of an strict pro-

gram, written in Haskell, showing these problems. After that we present a

solution in a lazy programming paradigm where no gluing data structure has

to be defined. However, such solution has other disadvantages that we will

discuss in detail later.

1.4.1 Strict Algorithms

One solution to implement name analysis on an abstract tree of LET is to do

so through a strict program. The idea is to use a set of functions to perform

one traverse on the tree, capturing all the information necessary and storing

it in an intermediate format. Afterwards, a second set of functions uses this

intermediate ”gluing” data type and performs a second traverse in order to

completely compute the list of errors.

In this implementation, a ”gluing” data structure, of type Let2, has to

14

be defined by the programmer and is constructed to pass the detected er-

rors explicitly from the first to the second traversal, in order to compute the

final list of errors in the desired order. To be able to compute the missing

declarations of a block, the implementation also has to explicitly pass the en-

vironment a block between the two traversals of the block. This information

must therefore also be in the Let2 intermediate structure:

data Let2 = Let2 Decls2 Expr

data Decls2 = Cons2 Error Expr Decls2

| NestedLet2 Error Lev Let Decls2

| Empty2

The data constructor NestedLet2 has to carry the errors (Error) and the level

(Lev) between traversals. We have already seen why the errors have to be

carried from the first to the second traversal. The value of the level must also

be carried around because it is on the second traversal that the first traversal

on nested expressions starts (recall Figure 1.3, where it is visible that the

initial environment of an inner block is composed by the total environment

of an outer one).

For every block we compute three things: its environment, its lexical

level and its invalid identifiers. The environment defines the context where

the block occurs. It consists of all the identifiers that are visible in the block.

The lexical level indicates the nesting level of a block. Observe that we have

to distinguish between the same identifier declared at different levels, which

is a valid declaration (for example, y in program ′), and the same identifier

declared at the same level, which is an invalid declaration (for example, x

in program ′). Finally, we have to compute the list of identifiers that are

incorrectly used, i.e., the list of errors.

We will need auxiliary functions that check the rule that a variable must

not be in (mNBIn) the environment (to check for duplicated declarations)

and the rule that a variable must be in (mBIn) the environment (to check

for the usage of undeclared identifiers). These two functions can be easily

defined in Haskell as:

mBIn :: String → Env → Error

15

mBIn name e =

case e of

[] → [name]

((Tuple n l) : es)→ if (n ≡ name) then []

else (mBIn name es)

mNBIn :: String → Int → Env → Error

mNBIn name lev e =

case e of

[] → []

((Tuple n l) : es)→ if ((n ≡ name) ∧ (l ≡ lev))

then [n]

else (mNBIn name lev es)

Next, we present scope analysis for LET defined with a strict strategy in

Haskell:

-- Scheduling the two traversals while also starting

-- the intermediate structure

semanticsStrict :: Root → Error

semanticsStrict (Root program) = errors

where

(let2, dclo) = duplicateDeclsLet program [] 0

errors = missingDeclsLet let2 dclo

duplicateDeclsLet :: Let → Dcli → Lev → (Let2,Dclo)

duplicateDeclsLet (Let decls expr) dcli lev = (Let2 decls2 expr , dclo)

where

(decls2, dclo) = duplicateDeclsDecls decls dcli lev

-- Constructing the intermediate structure while checking

-- for duplicated declarations

duplicateDeclsDecls :: Decls → Dcli → Lev → (Decls2,Dclo)

duplicateDeclsDecls (Cons name expr decls) dcli lev =

(Cons2 error expr decls2, dclo)

where

dcli2 = (Tuple name lev) : dcli

error = mNBIn name lev dcli

16

(decls2, dclo) = duplicateDeclsDecls decls dcli2 lev

-- Scheduling the traversal on nested expressions

duplicateDeclsDecls (NestedLet name nested let decls) dcli lev =

(NestedLet2 error lev2 nested let decls2, dclo)

where

lev2 = lev + 1

dcli2 = (Tuple name lev) : dcli

error = mNBIn name lev dcli

(decls2, dclo) = duplicateDeclsDecls decls dcli2 lev

duplicateDeclsDecls Empty dcli lev = (Empty2, dcli)

missingDeclsLet :: Let2 → Env → Error

missingDeclsLet (Let2 decls expr) env = errors ++ errors2

where

errors = missingDeclsDecls decls env

errors2 = missingDeclsExpr expr env

missingDeclsDecls ::Decls2 → Env → Error

missingDeclsDecls (Cons2 error expr decls) env = errors

where

errors = error ++ (missingDeclsExpr expr env)

++ (missingDeclsDecls decls env)

-- Scheduling the two traversals for the nested expression

missingDeclsDecls (NestedLet2 error lev nested let decls) env = errors

where

(nestedlet2, dclo) = duplicateDeclsLet nested let env lev

errors = error ++ (missingDeclsLet nestedlet2 dclo)

++ (missingDeclsDecls decls env)

missingDeclsDecls Empty2 env = []

missingDeclsExpr :: Expr → Env → Error

missingDeclsExpr (Const) env = []

missingDeclsExpr (Divide expr1 expr2) env = errors

where

errors = (missingDeclsExpr expr1 env)

++ (missingDeclsExpr expr2 env)

missingDeclsExpr (Minus expr1 expr2) env = errors

17

where

errors = (missingDeclsExpr expr1 env)

++ (missingDeclsExpr expr2 env)

missingDeclsExpr (Plus expr1 expr2) env = errors

where

errors = (missingDeclsExpr expr1 env)

++ (missingDeclsExpr expr2 env)

missingDeclsExpr (Times expr1 expr2) env = errors

where

errors = (missingDeclsExpr expr1 env)

++ (missingDeclsExpr expr2 env)

missingDeclsExpr (Var name) env = (errors)

where

errors = mBIn name env

Note that in semanticsStrict the function call duplicateDeclsLet not only com-

putes the total environment (using an accumulating parameters that starts

empty), but it also computes the gluing data structure that stores the dupli-

cated errors detected during the first traversal. The second traversal starts

with a call to missingDeclsLet giving that computed gluing data structure

and the accumulated environment as arguments. It returns the list of errors

that follows the sequential structure of the program.

Please note also that in the second traversal to a nested let expression, in

the function missingDeclsDecls for the constructor NestedLet2, the program

performs the two traversals to the body of that let: calls duplicateDeclsLet

and missingDeclsLet.

The use of this strict strategy that we have just seen has the following

advantages:

• Strict solutions are typically composed of smaller functions, which

means they are “modular”. However, this advantage may be lost when

there is the necessity of having intermediate structures, because since

all the functions need this intermediate structure any change means all

of them have to be adapted;

18

• This solution is easily incrementalized via standard (strict) functional

memoization [Saraiva and Swierstra, 1999a].

Despite being modular and easy to incrementalize, strict programs have

the following disadvantages:

• It is not easy to schedule the different traversals and write such inter-

mingled recursive functions, as this small example has showed;

• The programmer has to concern himself in defining gluing data struc-

tures. In functional programming this is done using additional data

types, as showed before. In other programming paradigms this is usu-

ally done via side effects: by storing such values in LET abstract rep-

resentation. As a result, this data type has to be modified to handle

such side effects.

Next, we will see an approach to implement name analysis on LET that is

based on circular, lazy programming.

1.4.2 Lazy Algorithms

Another approach to implement name analysis on LET is through circular pro-

grams. Contrary to the strict implementation we have presented in the previ-

ous section, this solution does not require two traversals, functions scheduling

or intermediate data types.

The main characteristic of circular programs if that they have what ap-

pears to be a circular definition: arguments in a function call depend on

results of that same call:

(. . . , x, . . .) = f . . . x . . .

Next, we will present a circular strategy for solving name analysis on LET,

in the programming language Haskell:

semanticsLazy :: Root → Error

semanticsLazy (Root program) = errors

19

where

(dclo, errors) = dup and missLet program [] dclo 0

dup and missLet :: Let → Dcli → Env → Lev → (Dclo,Error)

dup and missLet (Let decls expr) dcli env lev = (dclo, errors ++ errors2)

where

(dclo, errors) = dup and missDecls decls dcli dclo lev

errors2 = missingExpr expr dclo

dup and missDecls :: Decls → Dcli → Env → Lev → (Dclo,Error)

dup and missDecls (Cons str expr decls) dcli env lev = (dclo, errors)

where

dcli2 = (Tuple str lev) : dcli

(dclo, errors3) = dup and missDecls decls dcli2 dclo lev

errors2 = missingExpr expr dclo

errors = (mNBIn str lev dcli) ++ errors2 ++ errors3

dup and missDecls (Empty) dcli env lev = (dcli , [])

dup and missDecls (NestedLet str let1 decls) dcli env lev = (dclo, errors)

where

lev2 = lev + 1

dcli3 = (Tuple str lev) : dcli

(dclo2, errors2) = dup and missLet let1 dclo dclo2 lev2

(dclo, errors3) = dup and missDecls decls dcli3 dclo lev2

errors = (mNBIn str lev dcli) ++ errors2 ++ errors3

missingExpr :: Expr → Env → Error

missingExpr (Const) = []

missingExpr (Divide expr1 expr2) env = errors1 ++ errors2

where

errors1 = missingExpr expr1 env

errors2 = missingExpr expr2 env

missingExpr (Minus expr1 expr2) env = errors1 ++ errors2

where

errors1 = missingExpr expr1 env

errors2 = missingExpr expr2 env

missingExpr (Plus expr1 expr2) env = errors1 ++ errors2

where

20

errors1 = missingExpr expr1 env

errors2 = missingExpr expr2 env

missingExpr (Times expr1 expr2) env = errors1 ++ errors2

where

errors1 = missingExpr expr1 env

errors2 = missingExpr expr2 env

missingExpr (Var str) env = errors

where

errors = mBIn str env

An example of a circular definition is in the argument dclo in the function

dup and missDecls, where it is both an argument and the return value of the

function. The circular nature of this definition means that the programmer

can continue to define computations and the lazy nature of the engine will

be able to select which values can be computed at each given time in the

program chain, and be capable of producing a final result.

Using circular programming has some advantages comparing to the strict

strategy we have seen in the previous section:

• This solution needs only one tree traversal, so no function scheduling

is necessary;

• No intermediate structures are required. This means no extra work is

required for creating and maintaining additional data structures.

Despite not requiring intermediate structures or multiple traversals, cir-

cular programs have some disadvantages:

• As can be seen, it is hard and ”non-natural” to write such circular

programs, and even for an advanced lazy functional programmer it is

hard to write a program which is not completely circular, i.e., which

terminates;

• circular programs do not provide modularity: if new functionality has

to be added all the functions have to be modified, which is usually done

by adding more arguments and results to the existing functions. For

21

example, if we wish to compute the final result of a let expression, then

we need to add an additional result to all functions and consequently

to update their calls. Thus, a major update would be necessary;

• Lazyness is required, which is known as being more inefficient than

strict approaches [Fernandes et al., 2011], and requires a language that

supports lazy evaluation.

In this thesis we will present a functional setting to implement these

traversal algorithms, through the use of attribute grammars. Our setting

does not require extra effort to implement functions scheduling or intermedi-

ate data types as we saw on the strict programs, but it is also more capable

of coping with changes on data types or on the analysis and does not require

lazy mechanisms, as circular programs do. Our solution is also modular, and

can easily cope with changes both in the language and in the semantics we

want to implement.

1.5 Bidirectional Attribute Grammars

Despite their powerful expressiveness, attribute grammars and their mod-

ern extensions only provide support for specifying unidirectional transfor-

mations, despite bidirectional transformations being common in AG appli-

cations. Bidirectional transformations are especially common between ab-

stract/concrete syntax. For example, when reporting errors discovered on

the abstract syntax we want error messages to refer to the original code, not

a possible de-sugared version of it. Or when refactoring source code, pro-

grammers should be able to evolve the refactored code, and have the change

propagated back to the original source code.

Another application is in semantic editors generated by AGs [Kuiper and

Saraiva, 1998; Reps and Teitelbaum, 1989; Söderberg, 2012]. Such systems

include a manually implemented bidirectional transformation engine to syn-

chronize the abstract tree and its pretty printed representation displayed to

users. This is a complex and specific bidirectional transformation that is

implemented as two hand-written unidirectional transformations that must

22

A B

B’A’

get

put
transformation

Figure 1.4: A bidirectional transformation system.

be manually synchronized when one of the transformations changes. This

makes maintenance complex and error prone. In this work we will also lever-

age this limitation of AG by providing mechanism that make our embedding

environment supporting bidirectional transformations.

A bidirectional transformation (BX) is a program which expresses a trans-

formation from one input to an output together with the reverse transfor-

mation, carrying any changes or modifications to the output, in a single

specification.

For example, in a transformation A→ B , a bidirectional system defines

the B → A transformation, which has to carry any upgrades applied to B

back to a new A′ which is as close as possible to the original A. This can be

see in Figure 1.4. Here, a manually written get (the forward transformation)

creates a new type B, which suffers a transformation into B′. This B′ can be

automatically transformed, via the put (backward) transformation into a new

instance of type A, A′, without user intervention or any kind of additional

implementation.

Where a traditional approach would mean implementing both transfor-

mations manually, which is expensive, error-prone and creates obvious main-

tenance problems, a bidirectional system automatically derives a transfor-

mation in one direction.

It is common in bidirectional systems for the automatically generated

backward transformation to have a notion of the original data type that

generated the input of the transformation. Returning to Figure 1.4, this

would mean that the backward transformation would have as input B′, which

the function has to transform into a new A′, has information regarding the

original A. This aids in the transformation because it helps achieving an A′

as closer as possible to A, which is desirable.

23

In the context of grammars, a BX represents a transformation from a

phrase in one grammar to a phrase in the other, with the opposite direc-

tion automatically derived from the first transformation specification. Here,

of special interest are tree-based structures such as the ones generated by

concrete and abstract grammars, as seen in the previous sections. The prob-

lem with these transformations is that both the forward and the backward

transformations need to be implemented by hand.

Bidirectional data transformations have been studied in different comput-

ing disciplines, such as updatability views in relational databases [Bohannon

et al., 2006], programmable structure editors [Hu et al., 2004] or model-

driven development in software engineering [Stevens, 2008]. In [Czarnecki

et al., 2009] a detailed discussion and extensive citations on bidirectional

transformations are included.

1.6 Overview

In this thesis we propose a concise embedding of AGs in Haskell. This

embedding relies on the extremely simple mechanism of functional zippers.

Zippers were originally conceived by Huet [Huet, 1997] for a purely functional

environment and represent a tree together with a subtree that is the focus of

attention, where that focus may move within the tree. By providing access to

any element of a tree, zippers are very convenient in our setting: attributes

may be defined by accessing other attributes in other nodes.

Zippers do not rely on any advanced feature of Haskell such as lazy evalu-

ation or type classes. Thus, a zipper-based embedding of attribute grammars

can be straightforwardly re-used in any other functional environment. Our

embedding is also extended with the main modern AG extensions proposed

to the AG formalism.

We present an embedding attribute grammars with modern extensions as

first class attribute grammars together with a bidirectional system. By this

we are able to express powerful algorithms as the composition of AG reusable

components. We have used this approach in a number of applications, e.g.,

in developing techniques for a language processor to implement bidirectional

24

Functional
Language

Embedded
Attribute
Grammars

Implement
Language

Figure 1.5: We will embed AGs in Haskell, which will provide an environ-
ment to define and implement languages.

AG specifications and to construct a software portal.

Because AGs provide themselves syntax and semantics for programming

languages, we are creating a setting where we embed a DSL which can itself

be used to define and implement any programming language. This idea can

be seen in Figure 1.5.

Throughout this work, we will define AGs and extend them with modern

extensions, always using real-world problems. We will do so through a small

programming language that has characteristics and presents challenges as

bigger, real programming languages do. This language, to which we call

LET, provides the usual let - in declare/use construction found in functional

programming languages.

The problems we will present and their respective solutions will, as a

whole, define a small interpreter and compiler for LET: we will perform name

analysis, extend the language, transform it into different representations and

provide results for it, always using our technique for embedding AGs.

1.6.1 Main Publications

During this thesis, we have published a number of articles that describe the

work presented in this document:

• Martins, P. (2012). Zipper-based Embedding of Modern Attribute

Grammar Extensions. Doctoral Symposium of the 5th International

Conference on Software Language Engineering.

25

• Martins, P., Fernandes, J. P., and Saraiva, J. (2012). A Purely Func-

tional Combinator Language for Software Quality Assessment. In Pro-

ceedings of the Symposium on Languages, Applications and Technolo-

gies, volume 21 of SLATE ’12, pages 51–69. Schloss Dagstuhl - Leibniz-

Zentrum fuer Informatik.

• Martins, P., Fernandes, J. P., and Saraiva, J. (2014). A Web Portal

for the Certification of Open Source Software. In Proceedings of the

6th International Workshop on Foundations and Techniques for Open

Source Software Certification, volume 7991 of OPENCERT ’12, pages

244–260. Springer-Verlag.

• Martins, P., Carvalho, N., Fernandes, J. P., Almeida, J. J., and Saraiva,

J. (2013). A Framework for Modular and Customizable Software Anal-

ysis. In Proceedings of the 13th International Conference on Computa-

tional Science and Its Applications, volume 7972 of ICCSA ’13, pages

443–458. Springer-Verlag.

• Martins, P., Fernandes, J. P., and Saraiva, J. (2013). Zipper-Based

Attribute Grammars and Their Extensions. In Proceedings of the 17th

Brazilian Symposium on Programming Languages, volume 8129 of SBLP

’13, pages 135–149. Springer-Verlag.

• Martins, P., Saraiva, J., Fernandes, J. P., and Wyk, E. V. (2014). Gen-

erating Attribute Grammar-based Bidirectional Transformations from

Rewrite Rules. In Proceedings of the ACM SIGPLAN 2014 Workshop

on Partial Evaluation and Program Manipulation, PEPM ’14, pages

63–70. Association for Computing Machinery (ACM).

• Martins, P. and Carção, T. (2014). A Visual DSL for the Certifica-

tion of Open Source Software. In Proceedings of the 14th International

Conference on Computational Science and Its Applications, ICCSA’14

(to appear).

26

1.6.2 Software Prototypes

We have create a package in Hackage: an on line repository made out of

open-source libraries and tools, heavily used by the Haskell community. We

have created the package ZipperAG, which can be accessed in:

https://hackage.haskell.org/package/ZipperAG

Here, the reader can find the implementations presented in this thesis

together with more examples of zipper-based, AG implementations.

We have also created a prototype for our bidirectional system, which can

be accessed in the author’s web page, in:

http://www.di.uminho.pt/~prmartins

The web portal where our process management DSL was deployed can be

accessed in:

http://cross.di.uminho.pt

1.6.3 Other Publications

Besides exploring research that is fundamental to the core of this thesis,

we also had the opportunity to contribute to related scientific areas. These

contributions have resulted in the following publications:

• Martins, P., Lopes, P., Fernandes, J. P., Saraiva, J., and Cardoso, J.

M. P. (2012). Program and Aspect Metrics for MATLAB. In Proceed-

ings of the 12th International Conference on Computational Science

and Its Applications, ICCSA ’12, pages 217–233. Springer-Verlag.

• Cunha, J., Fernandes, J. P., Martins, P., Mendes, J., and Saraiva,

J. (2012). SmellSheet Detective: A tool for detecting bad smells in

spreadsheets. In Proceedings of the IEEE Forum on Visual Languages

https://hackage.haskell.org/package/ZipperAG
http://www.di.uminho.pt/~prmartins
http://cross.di.uminho.pt

27

and Human-Centric Computing, VL/HCC ’12, pages 243–244. Insti-

tute of Electrical and Electronics Engineers (IEEE).

• Pedro Martins and Rui Pereira (2014). Refactoring Smelly Spread-

sheet Models. In Proceedings of the 14th International Conference on

Computational Science and Its Applications, ICCSA’14 (to appear).

• Cunha, J., Fernandes, J. P., Martins, P., Pereira, R., and Saraiva, J.

(2014). Refactoring meets Model-Driven Spreadsheet Evolution. In

Proceedings of the 9th International Conference on Quality in Model

Driven Engineering, QUATIC ’14 (to appear).

• Martins, P., Abreu, R., Perez, A., Cunha, J., Fernandes, J. P., and

Saraiva, J. (2014). Smelling Faults in Spreadsheets. In Proceedings of

the 30th International Conference on Software Maintenance and Evo-

lution, ICSME ’14 (to appear).

1.7 Structure of the Thesis

This thesis is structured as follow: In Chapter 2 we provide a series of defini-

tions and notations that will be important to understand the work presented

in this document. Here we also present instances and examples of the for-

malisms we define. We also introduce the language we will use as a running

example throughout this work, and define its various grammar representa-

tions.

In Chapter 3 we introduce our embedding of AGs. We start by presenting

the concept of functional zippers through simple examples. This is an im-

portant technique on which this work is based. We also define the language

presented in the previous Chapter 2 in our environment.

In Chapters 4, 5 and 6 we present how different extensions are imple-

mented in our environment. In particular, we present reference attribute

grammars, higher order attribute grammars and circular attribute grammars,

respectively. We always present examples of how different language-oriented

tasks can be implemented with these extensions. All the different extensions

28

are introduced through sample code on different AG tools, and afterwards

we present the solution in our setting.

On Chapter 7 we show that our environment allows the combination of

different extensions. In particular, we show how a complex language-solving

task can be implemented with the combination of higher order and circularity,

and how these two integrate nicely.

In this work we also designed bidirectional techniques. In particular, we

introduce a formalism for designing and implementing transformation specifi-

cations. From these, we defined rules for validating these specifications, and

developed automatic techniques for expansion and inversion of the trans-

formations. We also explain how AG equations can be derived from the

transformation specifications, creating an environment that implements our

bidirectional system. This is presented in Chapter 8.

We have applied the technique described in this work in real-world prob-

lems. We designed a DSL for process management whose underground ma-

chinery is based on our zipper-based AG environment. We then implanted

this DSL on a web portal for customizable software analysis. This is pre-

sented in Chapter 9.

Finally, in Chapter 10 we present our conclusions for this work, directions

for future paths of research and our final remarks.

Chapter 2

Definitions and Notations

Summary

In this chapter we introduce the theoretical background neces-

sary to understand the rest of this work, through formalisms

and notations that represent the main concepts required. We

also provide examples of instances of these formalisms in the

language LET, also defined here.

2.1 Introduction

In this chapter we will introduce the theoretical background necessary to un-

derstand the rest of this work. We do so through the definition of formalisms

and notations for the entities we will reason about. We also present concrete

examples that instantiate them.

We start by defining context-free grammars (CFGs), important when for-

malizing the syntactic characteristics of a language. A CFG is composed by

a set of rules describing how to form textual representations from a language

alphabet, which are valid according to its syntax. A CFG does not describe

the semantics (the meaning) of this textual representations, only their form

and structure.

An attribute grammar (AG) is another formalism that is defined in this

chapter. AGs are a formal method to define the semantics of a language.

29

30

Through the description of semantic functions (called attributes) for each

production of a grammar, with an AG we can associate values to the lan-

guage, describing its meaning.

Both for context-free grammars and for attribute grammars, we present

examples of specifications of the syntax and the semantics of a program-

ming language which is also introduced. For context-free grammars, we also

present specifications of the various forms on which a language can be syn-

tactically specified, namely its concrete and abstract representation.

We make use of Haskell, a functional programming language that we use

to define certain semantic operations. We do so because this is the target

language of the work presented in this thesis and because it is a concise and

elegant notation on which semantics can be defined.

2.2 Context-free Grammars

Context-free grammars describe the structure and syntax of a programming

language by providing a technique that details them.

Definition 1. (Context-free Grammar) A context-free grammar (CFG)

is a 4-tuple G = 〈V,Σ, P, S〉 where:

• V is the non-empty, finite set of non-terminal symbols or non-terminals.

Each v ∈ V represents a different type of phrase, and defines a sub-

language of the language defined by the grammar G;

• Σ is the non-empty set of terminal symbols or terminals;

• P if the finite relation V → (V ∪ Σ)∗ (∗ represents the Kleene star),

called the rewrite rules or the productions of the grammar;

• S ∈ V in the start symbol of the grammar.

A context-free grammar is therefore composed by a set of non-terminals,

a set of terminals, a set of productions and a starting symbol.

Definition 2. (Production) A production p ∈ P is denoted by p : X0 →
X1 . . . Xn where:

31

• X0 ∈ V is a non-terminal, called the left-hand side of p or simply lhs,

denoted lhs(p);

• X1 . . . Xn are a set of terminal and non-terminal symbols, called the

right-hand side of p, or simply rhs, denoted rhs(p).

The total number of right-hand side symbols of a production p is defined

as | p |. A pair 〈p, i〉 is called an occurrence of the grammar symbol Xi ∈
(V ∪ Σ), with 0 6 i 6 n. A production is applied on X if and only if

〈p, 0〉 = X, and we say that a production p is a terminal production if it has

no non-terminal symbols on its right-hand side, i.e., ∀X ∈ rhs(p), X ∈ Σ.

An empty right-hand side on a production is represented with the symbol

ε, and a production with only one grammar symbol, i.e., a production with

the form A → ε is called an ε-production. It is common when defining

context-free grammars to list all right-hand sides of productions with the

same left-hand side using the symbol |. For example, the productions α→ β1

and α→ β2 can be written as α→ β1 | β2.

On a context-free grammar, the left-hand side non-terminal can be rewrit-

ten to its right-hand side. Therefore, we define the relation⇒, called directly

derives, as follows:

Definition 3. (Directly derives) For two strings u, v ∈ (V ∪Σ)∗, we say u

yields v, written as u⇒ v, if ∃(α→ β) ∈ P , with α ∈ V and u1, u2 ∈ (V ∪Σ)∗

such that u = u1αu2 and v = u1βu2. This means that v is the result of

applying α→ β to u.

The operation ⇒ possesses transitive and reflexive closures, which are

defined as usual, and denoted by ⇒+ and ⇒∗ respectively.

Definition 4. (Context-free Language) The language of a grammar G =

〈V,Σ, P, S〉 is the set L(G) = {w ∈ Σ∗ : S ⇒∗ w}. A language L, is said to

be a context-free language CFL, if there exists a CFGG, such that L = L(G).

A language is therefore the set of sequences of terminal symbols that can

be derived by rewriting the start symbol S.

32

The grammar G generates a sequence s if and only if s ∈ L(G). We say

that a symbol X ∈ (V ∪ Σ) is accessible or derivable from Y ∈ V if there is

a derivation of the form Y ⇒∗ α1Xα2 ∈ (V ∪ Σ)∗.

We say the grammar is unambiguous if one and only one sequence of

derivations exists for every s ∈ L(G), otherwise we call it ambiguous. Two

context-free grammars G1 and G2 are equivalent if and only if L(G1) =

L(G2), and are denoted as G1 ≡ G2.

Definition 5. (Complete Context-free Grammar) A context-free gram-

mar G = 〈V,Σ, P, S〉 is said to be a complete context-free grammar if and

only if ∀ X ∈ (V ∪ Σ),∃ µ, ν ∈ (V ∪ Σ)∗ ∧ δ ∈ Σ∗ : S ⇒∗ µXν ⇒∗ δ.

A context-free grammar is therefore said to be complete if every symbol is

accessible from the start symbol and every non-terminal can derive a sequence

of only terminal symbols.

2.2.1 Concrete and Abstract Grammars

Context-free grammars, as we have seen them in the previous section, specify

syntactic characteristics of languages. However, there is an important dis-

tinction between two classes of context-free grammars: concrete context-free

grammars and abstract context-free grammars.

A concrete context-free grammar G, which is also called a concrete gram-

mar defines how the vocabulary symbols (V ∪ Σ) can form a syntactic valid

sentence of L(G). A concrete grammar has the aim of allowing an easy

derivation of sentences of the language under consideration.

Grammars do not have the singular objective of formally defining a lan-

guage, they also guide a specific type of programs, called parsers, that check

if a stream of symbols is or is not valid according to the grammar. There-

fore, a concrete grammar defines sentences of a language precisely as the user

would write, with all the necessary syntactic symbols and with all the specific

language keywords.

Parsers usually perform other semantic actions while checking the stream

of symbols. One of these actions is to construct a representation of the

33

sentence being read, which is usually a tree, and can be the final result of

the parser or an intermediate data-type used for further processing. An

unambiguous concrete context-free grammar G defines a unique concrete

syntax tree for every sentence of L(G).

Definition 6. (Concrete Syntax Tree) A concrete syntax tree (CST),

also called derivation tree or parse tree, generated by a complete context-free

grammar G = 〈V,Σ, P, S〉, for a sentence s, is defined as:

• Each node is labeled by a symbol X ∈ (V ∪ Σ ∪ ε);

• If a node labeled X0 has children labeled X1, X2, . . . , Xn, then there is

a production p : X0 → X1, X2, . . . , Xn;

• The label of the root of the tree is S;

• The concatenation of all the leaves of the tree, from left to right, form

the sentence s.

There are various parsing techniques that can be used by a parser, always

with the aim of understanding how a sentence can be derived starting on the

starting symbol of a grammar. LL parsers, for example, use a recursive-

descent technique and are examples of top-down parsers, i.e., they start with

the starting symbol S and try to find how sentences match the right-hand side

of productions. LR parsers, on the other hand, are examples of bottom-up

parsers that start with the input and attempt to rewrite it to the start symbol.

The parsing technique may impose restrictions on the concrete context-free

grammar. For example, parsing techniques such as LL(1) and LR(1) require

the grammar to be in specific forms [Aho et al., 2006]. This means that

different concrete context-free grammars can be used to define the exact

same language.

We have seen how a concrete grammar completely describes a language,

usually with a huge set of symbols that precisely describe its syntax. After

this is done, and after we know the syntax is correct, we want to go to

the next step and structurally analyze the language, i.e., analyze the logic

34

behind the language sentences and how they connect to each others to form

a computer program.

In order to analyze and describe the structure of a language, the concrete

syntax and parsing characteristics of the language are abstracted as only

the structure is relevant. Thus, an abstract context-free grammar, or simply

abstract grammar describes precisely the abstract structure of a sentence,

without unnecessary symbols. In an abstract grammar we loose the syntax

characteristics of the language, but this is not a problem since this step is

always followed by such analysis.

One important note is that it is not correct, by modern standards, to split

an analysis of a language just between syntax and structure analysis. Modern

parsers are composed out of multiple steps that include tokenization, macro

expansion, handling pre-processor directives, among many others, usually

with intermediate data-types between. We do not focus on parsing in this

work, but more information on the subject can be found, for example, in

[Fernandes, 2004; Stallman and Community, 2009; van den Brand et al.,

2002; Aho et al., 2006; Terry, 2005].

Definition 7. (Abstract Syntax Tree) A abstract syntax tree (AST), gen-

erated by a complete context-free grammar G = 〈V,Σ, P, S〉, for a sentence

s, is defined as:

• Each node is labelled by a production p ∈ P ;

• Every node labelled by a ε-production is a leaf;

• Every node labelled by p, withX0 = pX1 . . . Xn, has n children T1 . . . Tn,

where each Ti, with 0 6 i 6 n, is again an abstract syntax tree labeled

with a production applied on Xi.

In context-free grammars we distinguish two different classes of terminal

symbols Σ = L ∪ Γ. L is the set of literal symbols, which consists of the

symbols of the alphabet that do not play a role in the semantics of the

language. Examples include keywords or punctuation symbols. Γ is the

set of pseudo-terminal symbols, which are non-terminal symbols for which

35

productions are implicit. These are typically expressed as regular expressions

[Aho et al., 2006], provided by an external lexical analyzer. Examples include

integers, strings, vectors and other identifiers of the language.

Non-terminal and pseudo-terminal symbols induce a set of terms, which

will from now on be regarded as types. Therefore, we define the function

TG :: (V ∪Γ)→ T , where ∀X ∈ (V ∪Γ), T is the set of types, and (TGX) ∈ T
is the set of all possible values of X.

2.3 Context-free Grammar Specification

Below is an example of a program in the LET language, which corresponds

to correct Haskell code (to simplify our initial example, we do not consider

nested let sub-expressions, but this extension to LET will be considered later

in this thesis).

program = let a = b + 3

c = 8

b = (c ∗ 3)− c

in (a + 7) ∗ c

We observe that the value of program is (a + 7) ∗ c, and that a depends

on b which itself depends on c. It is important to notice that a is declared

before b, a variable on which it depends. Finally, the meaning of program,

i.e. its value, is 208.

The concrete representation of LET can be easily described by the gram-

mar: GLETConcrete
= 〈V,Σ, P, S〉. As usual in context-free grammars, we

present the set of productions P only, and we use the standard Backus Naur

Formalism (BNF):

(p1: Start) Start → Main

(p2: Main) Main → ’Let’ Declarations ’In’ E

(p3: ConsDecl) Declarations → Name ’=’ E Declarations

(p4: NoDecl) Declarations → ε

(p5: Add) E → E ’+’ T

36

(p6: Take) E → E ’-’ T

(p7: Et) E → T

(p8: Prod) T → T ’*’ F

(p9: Div) E → T ’/’ F

(P10: Tf) T → F

(p11: Nest F → ’(’ E ’)’

(P12: Neg) F → ’-’ F

(p13: Constant) F → Number

(p13: Variable) F → Name

From this set of productions P , all of the components of GLETConcrete
can

be inferred: V is the set of all the symbols on the left-hand side, Σ is the set

with all the symbols that only appear on the right-hand side, and S is the

left-hand side symbol of the first production.

The concrete representation of LET defines a language starting with the

keyword ’Let’, immediately followed by Declarations, by the keyword ’In’

and by an expression E. As this is a concrete representation, we have to write

all the terminal symbols that constitute literal symbols, i.e., that are not

structurally important for the language but are important for parsing sen-

tences of LET exactly as a user would write it. Examples include parenthesis,

punctuation or symbols for arithmetic operations.

On the other hand, the terminal symbols Name and Number are pseudo-

terminal symbols. They represent strings (for variable names) and integers.

We assume these are externally provided by a lexical analyzer.

One important note on the definition of this grammar is the non-terminal

E. This terminal, which describes an expression, follows a well-know technique

for parsing expressions called expression-term-factor. This splits an expres-

sion into three non-terminals, E, T and F, important for avoiding ambiguities

in the way the grammar describes the language. There are more ways of

avoiding ambiguity, such as manually defining operators priority and giving

them left or right associativity. More information on expression-term-factor

and grammars ambiguity in general can be found in [Aho et al., 2006].

Returning to our example, this grammar is used for the syntactic analysis

of LET. It guides a computer program (typically a parser), through the process

37

of deriving each concrete sentence of the language. It also assigns a unique

concrete syntax tree to each syntactically valid sentence of the language.

and uses it to construct a concrete tree of the language. For example, for the

program program, and using this CFG, the concrete tree of Figure 2.1 (page

37) would be generated (or implicitly constructed).

Main

‘Let’ ‘In’

Et

Expr

Tf

Nest

‘(’ ‘)’Expr

Et

Tf

‘a’

Tf

‘7’

‘c’

ConsDecl
‘a’

ConsDecl
‘c’

ConsDecl

‘b’ NoDecl

Et

Tf

‘8’

Expr

Et

Tf

‘b’

Tf

‘3’
Expr

Tf

Nest

‘(’ ‘)’Et

Tf

‘c’

‘3’

Tf

‘c’

Et

Tf

Expr

Start

Figure 2.1: The CST for program.

As we have seen, when analyzing a language, syntactic analysis is only

part of the process. Another important process that follows it is semantic

analysis. This step differs from the previous one because when we reach

it we already know the syntax of the program has no faults (or we would

not have reached it in the first place). Since we need less information to

structurally analyze a language (for example, we do not need any literal

terminal symbols), this grammar will be much simpler:

Next, we can see the abstract grammar that structurally describes LET:

GLETAbstract
= 〈V,Σ, P, S〉, once again using BNF:

38

Let

Et

Expr

Expr

‘a’ ‘7’

‘c’

Cons
‘a’ Cons

‘c’ Cons

‘b’ Empty

‘8’
Expr

‘b’ ‘3’

Expr

‘c’ ‘3’

‘c’Expr

Root

Figure 2.2: The AST for program.

(p1: Root) Root → Let

(p2: Let) Let → Dcls Expr

(p3: Cons) Dcls → Name Expr Dcls

(p4: Empty) Dcls → ε

(p5: Expr) Expr → Expr Expr

(p6: Var) Expr → Name

(p7: Const) Expr → Number

This CFG is much more simple than GLETConcrete
, for two main reasons:

first, no literal symbols are necessary, for the reason we have described above.

Second, we can be much more clear when describing expressions, because

from the concrete tree we have no problems related to ambiguity when cre-

ating its abstract counter part.

In Figure 2.2 we can see the AST that would be obtained by a parser (or

any other program capable of generating an AST) for program.

Comparing the concrete tree from Figure 2.1 (page 37) to the abstract

tree from Figure 2.2 the differences are immediately visible: despite being

structurally the same, the abstract tree has less nodes and leafs and therefore

is easier to reason about and to handle comparing to its concrete version.

Both grammars presented in this section are capable of syntactically defin-

ing a LET program, but by themselves they are not capable of completely

analyzing a language. Take as example the following program:

39

faulty = let a = c

b = 3

in a ∗ b

Syntactically speaking, there is nothing wrong with the program faulty. It

is composed by a list of definitions, either to numbers or to other variables,

and a computation in the end. However, semantically speaking it is easy to

notice that it is not possible to compute faulty, as the variable a uses another

variable, c, that is not defined anywhere.

Despite CFGs being capable of defining the syntax of a language, this

formalism has no way of detecting problems as the one in faulty. In the next

sections we will introduce attribute grammars, that complement context-free

grammars in the sense that we are not only capable of defining the syntax,

they are also capable of defining the semantics of a language.

2.4 Attribute Grammars

Attribute grammars were first introduce by Knuth [Knuth, 1968] as an ex-

tension to CFGs. As we have seen in the previous section, CFGs define the

syntax of a language. AGs extend this formalism to specify the semantic

properties of the language as well.

Definition 8. (Attribute Grammar) An attribute grammar (AG) is a

triple AG = 〈G,A,D〉 where:

• G is a context-free grammar such that G = 〈V,Σ, P, S〉;

• A is a finite set of attributes, partitioned into two sets, Anont(X) and

Aloc(p), ∀X ∈ V and ∀p ∈ P . Anont(X) is further partitioned into two

disjoint sets Ainh(X) and Asyn(X);

• D = (T,E) is the semantic domain of the attribute grammar. T is a

finite set of types and E is a finite set of semantic equations.

To create an AG, a CFG is extended as follows: attributes are associated

with every grammar symbol and every production. Each attribute described

40

a semantic property of the language. The attributes are split into two sets:

inherited attributes and synthesized attributes.

For every occurrence of a grammar symbol in a production, there is an

attribute occurrence. With every production, three sets of attribute occur-

rences are assigned: the set of local attribute occurrences of the production,

the set of input occurrences, and the set of output occurrences. The set of in-

put occurrences consists of all inherited attribute occurrences of the left-hand

side symbol of the production and all the synthesized attribute occurrences

of the symbols in the right-hand side of the production. Similarly, the set

of output occurrences contains all the synthesized attribute occurrences of

the left-hand side symbol and all the inherited attribute occurrences of the

symbols in the right-hand side of the production.

With every output attribute occurrence and every local attribute a se-

mantic equation is defined, specifying the value of that attribute occurrence

in terms of other attribute occurrences. Attribute grammars are declara-

tive, as values of (inherited/synthesized) attribute occurrences are defined in

terms of other (inherited/synthesized) attributes.

On an AG, A and D are known as the attribution rules of the attribute

grammar. G specifies the (abstract) syntax of the (source) language and

A and D specify the semantics of the language. Every attribute a ∈ A

is associated with either a grammar symbol X ∈ V or a production p ∈ P .

Anont(X) is the set of attributes associated with non-terminal X. An element

a ∈ Anont(X) is denoted by X.a, and it can be inherited or synthesized, if

a ∈ Ainh(X) or if a ∈ Asyn(X), respectively. Attributes have a type, and

the function T :: A→ T associates a type with every attribute. This means

that ∀a ∈ A, (T a) ∈ T is the set of all possible values of a.

All the attributes a ∈ Aloc(p) are known as local attributes of a production

p and are denoted by p.a, where all the local attributes p.a represent a local

attribute occurrence for the production p.

We say a production p ∈ P , p : X0 → X1 . . . Xn, with n ≥ 0, has

an attribute occurrence 〈p, i, a〉 if a ∈ Anont(Xi), with 0 ≤ i ≤ n. For

every occurrence 〈p, i〉 of a symbol Xi ∈ N in a production, sets of attribute

occurrences are associated as follows:

41

Oinh(〈p, i〉) = {〈p, i, a〉 | a ∈ Ainh(Xi)}

Osyn(〈p, i〉) = {〈p, i, a〉 | a ∈ Asyn(Xi)}

Ont(〈p, i〉) = Oinh(〈p, i〉) ∪Osyn(〈p, i〉)

We defined Ontoccs(p) =
⋃

0≤i≤|p| Ont(〈p, i〉) as the set of all attribute

occurrences associated with the non-terminal occurrences of the produc-

tion p. Furthermore, the sets of all attribute occurrences of p is Opr(p) =

Oloc(p)∪Ontoccs(p), and the set of input and output occurrences are defined,

respectively, as:

Oinp(p) = Oinh(lhs(p)) ∪
⋃

1≤i≤|p|

Osyn(〈p, i〉)

Oout(p) = Osyn(lhs(p)) ∪
⋃

1≤i≤|p|

Oinh(〈p, i〉)

The function T is overloaded and works for attribute occurrences, which

means that T 〈p, i, a〉 = T a.

On attribute grammars, ∀p ∈ P, p : X0 → X1 . . . Xn, with n ≥ 0, there is

a set of attribute equations, denoted Ep, which is associated with a produc-

tion p, and defines the value of every attribute occurrence in Oout(p)∪Oloc(p)

in terms of other attribute occurrences in Opr(p). This implies Ep is a set of

equations of the form (α1, α2, . . . , αx) = f(β1, β2, . . . , βx), where k ≥ 0 and

αi ∈ Oout(p) ∪Oloc(p).

For the set of attribute equations Ep, every Bi, with 1 ≤ i ≤ k is either

an attribute occurrence in p or an occurrence of a grammar symbol in p.

When βi = 〈p, q〉, for 1 ≤ q ≤| p | we say it is a grammar symbol occurrence

and that 〈p, q〉 is syntactically referenced in the semantic equations of AG.

A syntactic reference is therefore an occurrence of a non-terminal symbol

in the production p that is directly used on the right-hand side of a semantic

equation. Formally, we define as βi ∈ Opr(p)∪
⋃

0≤p≤|q|〈p, q〉 the symbols that

occur on the right-hand side of an equation.

In de definition of Ep, f is a semantic function that maps values from

42

β1, β2, . . . , βx to values of α1, α2, . . . , αx, with the type T (β1) → T (β2) →
· · · → T (βx) → (T (α1) → T (α2) → . . . T (αx)). The function T works

on grammar symbols, as T :: A ∪ V ∪ Γ → T . For the special case when f

represents the identity function, we call it a copy rule. We can now define

E =
⋃

p∈P Ep as the set of all the equations in an AG.

To the sets of all attribute occurrences that are defined and used in p we

call Odef (p) and Ouse(p) respectively, which we define as:

Odef (p) = {α | ((. . . , α, . . .) = f(. . . , β, . . .)} ∈ Ep}

Ouse(p) = {β | ((. . . , α, . . .) = f(. . . , β, . . .)} ∈ Ep ∧ β ∈ Opr(p)}

Definition 9. (Complete Attribute Grammar) An attribute grammar

AG = 〈G,A,D〉 is a complete attribute grammar when:

• Odef (p) = Oloc(p) ∪Oout(p);

• ∀((. . . , αi, αj, . . .) = f . . .), ((. . . αk . . .) = g . . .) ⊆ Ep, αi 6= αj 6= αk.

is true for all p ∈ P of the grammar G and G is a complete context-free

grammar.

For a equation of the form (α1, α2, . . . , αx) = f(β1, β2, . . . , βx), every at-

tribute occurrence αi, with 1 ≤ i ≤ l depends on each attribute occurrence

βj, with 1 ≤ j ≤ k. Semantic equations induce dependencies in attribute

occurrences.

This, Ep induces a dependency graph DP (p) ⊆ Opr(p)×Opr(p), where:

• The vertices of DP (p) are the attribute occurrences in Opr(p);

• There is a directed arc from β to α and we write β α, if α depends

on β and α, β ∈ Opr(p). This is formally written as DP (p) = {β
α1, . . . β α2 | ((α1, . . . , αn) = f(β1, . . . , βn) ∈ Ep)};

• DP =
⋃

p∈P DP (p) is the relation of direct dependencies among at-

tribute occurrences associated to productions.

43

The definition of attribute grammar presented here is, with slight differ-

ences, similar to the ones presented in [Kastens, 1980; Alblas, 1991; Pennings,

1994].

The dependency graph summarizes the attribute dependencies associated

with a production p.

2.4.1 Attributed and Decorated Trees

We have seen in Section 2.2.1 that from an abstract grammar we can create

an abstract tree for every sentence in a language defined by it. Similarly,

the attribution rules of an attribute grammar assigns attributes to nodes of

a syntax tree, to which we call attributed tree or undecorated tree.

Definition 10. (Attribute Tree) An attribute tree T is defined as follows:

for all the nodes N ∈ T that is an instance of a non-terminal symbol X,

attribute instances are assigned, which correspond to attributes of X. For

all attributes a ∈ Anont(X) the correspondent instance is denoted N.a. For

all local attribute of p, l ∈ Aloc(p) induces an attribute instance on the node

N , with p being a production of N . Such instances are denoted as N.l.

To the process of computing values of attribute instances in an attributed

tree T according to the semantics of the AG we call attribute evaluation or

tree decoration, and a program that performs such task is called an attribute

evaluator. Thus, a decorated tree is an attributed tree where all the attribute

instances have been calculated.

There are various methodologies to implement evaluation on attribute

grammars, called attribute evaluators [Hoover and Teitelbaum, 1986; Reps

and Demers, 1987; Jones, 1990; Kaiser and Kaplan, 1993; Middelkoop et al.,

2011; Bransen et al., 2014].

We call the meaning of an AG to the value of the synthesized attribute

instances associated with the top-most position (root) of the decorated at-

tributed tree. We say that two attribute grammars are equivalent if they

associate the same meaning to every sentence of the language they define.

Definition 11. (Equivalent Attribute Grammars) To attribute gram-

mars AG1 = 〈G1, A1, D1〉 and AG2 = 〈G2, A2, D2〉 are said to be equivalent

44

attribute grammars, which is written as AG1 ≡ AG2 if and only if G1 ≡ G2

(they define the same language L) and the rules A1∪D1 and A2∪D2 associate

the exact same meaning to every sentence s ∈ L.

An attribute grammar can also be well defined or bad defined.

Definition 12. (Well-defined Attribute Grammar) An attribute gram-

mar AG = 〈G,A,D〉 is said to be a well-defined attribute grammar if and

only if all the attribution rules A ∪ D are such that for each attribute tree

generated by the grammar G, all the values of the attribute instances of the

tree are computable.

Uninformally, an AG is well-defined if all the values of the attribute in-

stances within each tree T can be computed by some attribute evaluation

process.

2.4.2 Circularities in Attribute Grammars

In the same way attribution rules induce dependencies among attribute oc-

currences, they also induce dependencies among attribute instances. In par-

ticular, we say that an attribute instance Nj.α depends on an instance Ni.β

if and only if for a p = prod(N), 〈p, i, β〉 〈p, j, α〉 ∈ DP (p). This, we de-

note DTR(T) the dependency graph for the dependencies among attribute

instances in an attribute tree T .

DTR(T) is always defined by taking the attribute instances of an at-

tributed tree as its vertices. If the attribute instance Nj.α depeds on the

attribute instance Ni.β, DTR(T) will contain a direct arc from Nj.α to Ni.β.

Traditional definitions of well-defined AGs, such as the ones found in

[Knuth, 1968; Alblas, 1991] enforce a-cyclic attribute dependency graphs in-

duced for every attributed tree. This means that attribute instances must

have a partial evaluation order, and no attribute instance may transitively

depend on itself.

Definition 13. (Non-Circular Attribute Grammar)) An attribute gram-

mar AG = 〈G,A,D〉 is called a non-circular attribute grammar if for every

attribute tree generated by the AG, DRT (T) is a-cyclic.

45

There are well-known attribute grammar techniques that statically check

for circularities within attribute grammars, such as [Knuth, 1968; Alblas,

1991; Rodeh and Sagiv, 1999; Sasaki and Sassa, 2004; Schäfer et al., 2009] and

algorithms that statically compute an order for the evaluation of attributes

[Kastens, 1980].

2.5 Attribute Grammar Specification

In this section we will demonstrating how to specify the semantics of a lan-

guage, namely a LET program, as an AG. Our goal when processing a LET

program is to compute the semantics (i.e., the value) of a LET program. Imple-

menting this computation introduces typical language processing challenges:

1. Name/scope analysis in order to verify whether or not all the variables

that are used are indeed declared;

2. Semantic analysis in order to calculate the meaning of the program; this

analysis incorporates name analysis through symbol table management

and processing of the algebraic expressions that compose a program.

To introduce attribute grammars, we will focus the presentation on a

name analysis task. After having solved this task, the computation of the

result of a LET expression is very simple. That computation via AGs will be

described later.

The AG that we will construct in order to specify the name analysis

task of the LET language can be split into the following semantic groups of

operations, which are intermingled:

1. Capture all variable declarations before the current declaration is con-

sidered, which we will implement in the inherited attribute dcli (dec-

larations in). In the program above, if dcli was to be computed in the

node for b = (c ∗3)−c, it will be a list containing a and c, because these

are the variables declared before this declaration. The attribute syn-

thesized dclo (declarations out), synthesizes/returns all the declared

variables in the program. Both these attributes are lists of identifiers.

46

2. Distribute all the declared variables in a program throughout the tree,

which we will implement in the inherited attribute env (environment).

This will always produce the list of declared variables, regardless of the

position on the tree where the attribute is accessed. env is a list of

identifiers.

3. Calculate the list of invalid declarations, i.e., variables that have been

declared twice and variables that are being used in an expression but

have not been declared. For the AG that performs the scope/name

analysis this attribute will constitute the meaning of the grammar, its

final result, and will be called errs (errors). The returning type of errs

will be a list of identifiers.

In the definition of an the AG, we use a notation similar to the one

in [Paakki, 1995], where a definition (p n) production {semantic rules} is

used to associate semantics with the syntax of a language. Syntax is defined

by context-free grammar productions and semantics is defined by semantic

rules that define attribute values. In a production, when the same non-

terminal symbol occurs more than once, each occurrence is denoted by a

subscript (starting from 1 and counting left to right). Please recall that the

traditional definition of AGs only permits semantic rules of the form X.a =

f(...), forcing the use of identity functions for constants. For clarity and

simplicity, we allow their direct usage in attribute definitions.

It is assumed that the value of the attribute lexeme is externally pro-

vided by a lexical analyzer to give values to terminal symbols. Also, we use

the following constructions and auxiliary functions, whose syntax is taken

directly from Haskell but have general constructions in most programming

languages:

• ++ for lists concatenation

• [] represents an empty list

• : for the addition of an element to a list

• We also use the functions mBIn and mNBIn, as defined in Section 1.4.

47

Attributes have a type. Therefore, we define the type of pseudo-terminal

symbols as Name and assume it exists and is provided externally. We also

define a new type, the environment, which we denote by Env. Env represents

a list of identifiers and its type is defined in Haskell as:

type Env = [Name]

It is possible to use a different notation, unrelated to Haskell, to define new

types. They can be, for example, defined directly in the AG formalism. This

is quite common, and the idea is to define new non-terminals that describe

the type. Env for example, could be defined in an AG fashion by the following

non-terminals and productions:

(p1: Cons) Env → Name

(p2: Nil) Env → ε

The type Env and the non-terminal Env are isomorphic, as the non-

terminals Cons and Nil correspond to the Haskell built-in functions : and

[], respectively.

In order to the define an AG that implements name analysis for LET, we

will split it into three different semantic domains. We do so for clarity and to

focus in each one individually. These will represent three semantic domains

of the analysis itself: capturing the declaration of variables, distributing the

environment and calculating the errors, if they exist.

2.5.1 Capturing Variable Declarations

In order to capture variable declarations, a typical solution in a functional

settings is to implement a recursive function that starts with an empty list

and accumulates each declaration in a list while traversing it. Such function

returns the accumulated list of declaration as its final result. This technique

is known as accumulating parameters [Bird, 1998] (or simply accumulators).

In AGs, accumulators are typically implemented as a pair of inherited and

synthesized attributes, representing the usual argument/result pair in a func-

tional setting. This pattern can be seen in the attributes dcli and dclo that

we present next. Both this attribute have the same returning type: Env.

48

Capturing variable declarations is performed using a top-down strategy

with the inherited attribute dcli, as can be seen below:

inherited attribute dcli :: Env

dcli is defined for Root, Let, Dcls

(p1: Root) Root → Let

{ Let.dcli = [] }
(p2: Let) Let → Dcls Expr

{ Dcls.dcli = Let.dcli }
(p3: Cons) Dcls1 → Name Expr Dcls2

{ Dcls2.dcli = Name.lexeme : Dcls1.dcli }

At the topmost node of a LET tree no variable declaration is visible. This is

denoted by dcli being assigned the empty list on production p1. A Cons node

inherits the same dcli that is computed for its Let parent, as can be seen in

production p2. Finally, p3 defines that when a variable is being declared, its

name should be added/accumulated to the so far computed dcli attribute,

and it is the resulting list that should be passed down.

Note that the value of the attribute dcli that is inherited by a Cons node

excludes the declaration that is being made on it. As we will see below, this

will help us detect dupicated variable declarations of the same variable.

The synthesized attribute dclo works botton-up, and its function is to

call dcli on the last element of the list of variable declarations. Since dcli

returns a list of variables that are visible at the position where it is called,

calling it at the bottom of the list will effectively produce the total list of

variables. Similarly to dcli, this attribute is not present throughout the

entire grammar, but only on the productions p1-p5. Its implementation is:

synthesized attribute dclo :: Env

dclo is defined for Root, Let, Dcls

(p1: Root) Root → Let

{ Root.dclo = Let.dclo }
(p2: Let) Let → Dcls Expr

49

Root

Let

Cons

Empty

dcli

dcli

dclo

dclo

dclo

dclo
Name

[]

: dcli
Expr

Figure 2.3: The relation between the inherited attribute dcli and the syn-
thesized attribute dclo, implementing an accumulation pattern.

{ Let.dclo = Dcls.dclo }
(p3: Cons) Dcls1 → Name Expr Dcls2

{ Dcls1.dclo = Dcls2.dclo }
(p4: Empty) Dcls → ε

{ Dcls.dclo = Dcls.dcli }

Another important remark about the attributes dcli and dclo is that they

are only declared for the productions p1-p3 (and p4, in the case of dclo), and

not for the entire CFG. This is typical of AGs as sometimes, as is the case,

specific semantics depend only on specific parts of the tree/language. The

full pattern of attribute calculation can be seen for a simple tree in Figure 2.3.

2.5.2 Distributing Variable Declarations

One important part of the semantics of analyzing the scope rules of a LET pro-

gram is distributing the information regarding variable declarations through-

out the entire tree. This is important because it will allow us, when searching

for the usage of undeclared identifiers, to use an attribute that we are sure

carries all the variable declarations in the entire program.

Distributing variable declarations is performed by the inherited attribute

env, whose type is Env and definition we present next:

inherited attribute env :: Env

env is defined for Root, Let, Dcls, Expr

50

Root

Let

Cons

Empty

env

env

dclo

env

Aenv

Expr
Name AAenv env

Figure 2.4: The inherited attribute env, distributing the environment
throughout the tree.

(p1: Root) Root → Let

{ Let.env = Let.dclo }
(p2: Let) Let → Dcls Expr

{ Dcls.env = Let.env

, Expr.env = Let.env }
(p3: Cons) Dcls1 → Name Expr Dcls2

{ Expr.env = Dcls1.env

, Dcls2.env = Dcls2.env }
(p5: Expr) Expr1 → Expr2 Expr3

{ Expr2.env = Expr1.env

, Expr3.env = Expr1.env }

The attribute env is present everywhere in the tree with the same value.

The equations go all the way up the tree to obtain the dclo attribute of the

root. The inherited attribute env and its relation with dclo can be seen in

Figure 2.4.

2.5.3 Calculating Invalid Identifiers

The meaning of an AG is typically given as the value of one of its synthesized

attributes. When implementing scope analysis for the LET language, we want

to derive a list of invalid identifiers, where by invalid we mean identifiers that

are either declared twice, or are used but not declared.

This list represents the meaning of the grammar and is calculated by the

attribute errs, whose returning type is Error, which can be defined in an

51

AG fashion by the following non-terminals and productions:

(p1: Cons) Error → Name

(p2: Nil) Error → ε

Next, we present the definition os errs:

synthesized attribute errs :: Error

errs is defined for Root, Let, Dcls, Expr

(p1: Root) Root → Let

{ Root.errs = Let.errs }
(p2: Let) Let → Dcls Expr

{ Let.errs = Dcls.errs ++ Expr.errs }
(p3: Cons) Dcls1 → Name Expr Dcls2

{ Dcls1.errs = (mNBIn Name.lexeme Dcls1.dcli)

++ Expr.errs ++ Dcls2.errs }
(p4: Empty) Dcls → ε

{ Dcls.errs = [] }
(p5: Expr) Expr1 → Expr2 Expr3

{ Expr1.errs = (Expr2.errs) ++ (Expr3.errs) }
(p6: Variable) Expr → Name

{ Expr.errs = mBIn Name.lexeme Expr.env }
(p7: Constant) Expr → Number

{ Expr.errs = [] }

This attribute is propagated up the tree and its semantics are only rel-

evant for the productions p3 and p9 where the equations use the attributes

dcli and env to check for duplicated variable declarations and use of unde-

clared identifiers, respectively.

In the production p3, errs checks if a variable has been declared before.

This is easily done with the attribute dcli. Recall that this attribute returns

a list of variable declarations up to a certain tree node, which means that

errs uses the auxiliary function mNBIn to see if the current variable is not

present in the list produced by dcli.

52

Root

Let

Cons

Empty

errs

errs

errs

Name

mNBIn

[]

dcli

errs

++

A

Constant

Variable

errs

errs

errs
++

[] env

++

mBInExpr

Figure 2.5: The synthesized attribute errs.

Whenever variables are used inside expressions we have to see if they

have been declared before. This means that the semantics for errs in the

production p9 checks the list produced by env (containing all the variables of

the program) and to see if the variable is present. In Figure 2.5 we can see

how this attribute is defined throughout the abstract tree of LET and how it

relates to the attributes dcli and env.

The strict and circular programs from Sections 1.4.2 and 1.4.1 can be

generated from such an attribute grammar specification using the techniques

proposed in [Kuiper and Saraiva, 1998; Saraiva and Swierstra, 1999a; Saraiva,

1999].

2.5.4 Decorated Tree

We have seen in the previous sections how an AG, which we split into seman-

tic domains, can implement the semantics of a programming language, LET.

These domains are made out of 4 attributes that together provide a meaning

for the grammar, i.e., compute errors in the declarations and use of variables.

As we have seen in Section 2.4.1, on an attribute grammar attributes

are assigned to tree nodes and their definitions is interdependent on other

attributes in the same node or in nodes that are immediately above or behind

the current site. To this tree with semantic equation in each node we gave

the name of decorated tree, and it is the computation of all these semantic

53

equations that provides the final result of the grammar.

In Figure 2.6 (page 54) we can see the decorated tree generated for the

program of Section 2.3. In particular, in this figure we have the exact same

AST as we have seen in Figure 2.2 (page 38). As we have seen, we use an

AST because it provides the same structural information as an CST but with-

out unnecessary syntactic clutter, and we decorate that tree with semantic

information.

For the specific case of the decorated tree of Figure 2.6, the returned

result will be an empty list, as there are no faults for the program it defines.

Although AGs are generic, and define the semantic of a language in the same

way that a CFG defines the syntax of all programs of certain language, the

decorated trees are specific for every specific instance of, in this case, a LET

program. This happens for the exact same reason an AST is different for two

different program: the user might use different constructs and strategies for

equally valid programs, and the AST (and the decorated tree) represent the

syntax (and the semantics) for that specific program.

Summarizing the AG formalism, attribute occurrences are calculated by

invocations of small semantic functions that depend on the values of other

attribute occurrences. The calculations are specified by simple semantic

equations associated with the grammar productions of the language. This

approach makes the programmer’s work easier as it decomposes complex

computations into smaller parts that are easier to implement and to reason

about than if the full computation was considered.

In attribute grammars, programmers do not have to define intermediate

gluing data structures nor concern themselves in scheduling traversals, like in

straightforward implementations we presented in Section 1.4.1. In fact, well-

known AG techniques automatically infer such data structures and how to

traverse the AST from the AG specification. Moreover, they are modular: we

can add new functionality by just add a new fragment to the AG specification.

This is the kind of behavior we aim to add to a functional setting by

embedding AGs. In the next chapter we will see how zippers can be used to

embed this AG in the functional language Haskell.

54

Let
Et

Expr

Expr

‘a’ ‘7’

‘c’
Cons

‘a’
Cons

‘c’

Cons

‘b’
Empty

‘8’Expr

‘b’ ‘3’

Expr

‘c’ ‘3’

‘c’Expr

dclodcli

dcli

dcli

dcli

dcli

Root

env

env

env

env

env env

env

env

env

env

env

env

env

env

env

env

env

env env

env

env

env

dclo errs

errs

dclo errs

dclo errs

dclo errs

dclo errs

errs

errserrs

errs

errs errs

errs

errs

errs errs

errs

errs

errs

[]

[]

[]

[]

[]

errs

mNBin

mNBin

mNBin

mBIn

mBIn

mBIn

mBIn

mBIn

errsenv

[]

Figure 2.6: The decorated tree for the LET program of Section 2.3. The capture
of variables declarations is represented with pointed lines, the distribution of
variables with dashed lines and the calculation of identifiers with black lines.

55

2.6 Conclusions

In this chapter we have seen definitions and notations for context-free gram-

mars, attribute grammars and Σ-algebras, formalisms that will be used

throughout this thesis and that are needed to understand the work devel-

oped in this context.

In the next chapter we will present our setting for embedding attribute

grammars in Haskell.

56

Chapter 3

Embedding Attribute

Grammars

Summary

In this chapter we present an embedding of attribute grammars

in a functional setting. This embedding is based on functional

zippers [Huet, 1997], which we also introduce. We will use the

navigational power of this technique to define computations in

Haskell that retain the main characteristics of attribute gram-

mars, namely their modularity and expressiveness.

3.1 Introduction

In this chapter we define how attribute grammars can be embedded in a

functional setting using functional zippers.

We will define data types in Haskell to represent our grammars, on top

of which we will define attributes as they were presented in the previous

chapter, which is sketched in Figure 3.1. As they were defined previously,

attributes in the canonical definition of AGs may only depend on information

from neighbor nodes, but we will leverage this limitation in the following

chapters.

57

58

Attributes

Attributes Attributes

Attributes Attributes

Attributes Attributes

Figure 3.1: Overview of what we will define in this chapter.

In order to embed AGs we relly on the notion of zippers. A zipper is

a technique for representing a data structure where traversals are simplified

through primitives that allow simple navigation of the underlying structure.

This makes this setting convenient and powerful to describe attribute gram-

mars functionaly: the same simple mechanisms provided by zippers that

allow movement up or down the tree, also allow us to write functions that,

as attribute equations, are defined based on their context on a specific struc-

ture.

We start by describing different approaches that relate to the ones we

are presenting, either because they use a zipper-base setting to describe and

implement programs, or because they describe different techniques to embed

attribute grammars that do not rely on zippers.

After, we describe in detail the concept of zippers through their defini-

tion and through examples that show the construction and usage of such

technique.

We then describe how the attribute grammars can be described in our

setting, by providing zipper-based implementations of both the context-free

grammars and the attributes we have seen before for LET. As we will see, the

specification of attribute grammars in our setting is very similar to the one

presented in the previous chapter.

59

3.2 Functional Zippers

In this section we will introduce functional zippers (or simply zippers), which

are a central part of our technique for embedding AGs in a functional setting.

Zippers [Huet, 1997] were originally introduced to represent a tree to-

gether with a subtree that is the focus of attention. During a computation

the focus may move left, up, down or right within the tree. Generic manipu-

lation of a zipper is provided through a set of predefined functions that allow

access to all of the nodes of the tree for inspection or modification.

Moreover, conceptually, the idea of a functional zipper is applicable in

other programming languages, functional or not, lazy or not ([Huet, 1997]),

which means a technique expressed via zippers, for example an attribute

grammar, can be achieved in other environments as well.

In order to illustrate the concept of zippers, let us introduce a simple

Haskell data type that represents binary leaf trees:

data Tree = Fork Tree Tree

| Leaf Int

which has only two data constructors, Fork and Leaf and integers as leaf

values. Let us also introduce a possible instance if this data type:

tree = Fork (Leaf 1)

(Fork (Leaf 4)

(Leaf 7))

which represents a tree with two nodes and three leafs. Its visual represen-

tation can be seen in Figure 3.2a.

We may notice that, in particular, each of the subtrees occupies a certain

location in tree, if we consider it as a whole. That location may be represented

by the subtree under consideration and by the rest of the tree, which is viewed

as the context of that subtree.

One of the possible ways to represent this context is as a path from

the top of the tree to the site which is the focus of attention (where the

subtree starts). This means that it is possible to use contexts and subtrees

60

74

1

(a) No focus selected.

7

1

(b) Focus on the production Plus.

Figure 3.2: Representation of the binary tree tree, with and without a focus
of attention.

to define any position in the tree, while creating a setting where navigation

is facilitated by the contextual help of a path applied to a tree.

For example, if we want to put the focus in Leaf 4, as can be seen in

Figure 3.2b, its context in tree is:

tree = Fork (Leaf 1)

(Fork ⊗
(Leaf 7))

where ⊗ points the exact site in the where Leaf 4 appears. On of the possible

ways of representing this context is as a path from the top of the tree to the

position which is the focus of attention. To reach Leaf 4 in tree, we need

to go right (down the right branch) and then left (down the left one). In

practice, this means that given the tree in Figure 3.2a and the path [right,

left] would suffice in indicating the site of the tree we want to focus our

attention in.

This is precisely the idea behind zippers. Using the idea of having pairs

of information composed by paths and trees, we may represent any positions

in a tree and, better yet, this setting allows an easy navigation as we only

have to remove parts of the path if we want to go to the top of the tree, or

add information if we want to go further down.

Using this idea, we may represent contexts as instances of the following

data-type:

data Cxt a = Top

61

| L (Cxt a) a

| R a (Cxt a)

A value L c t represents the left part of a branch of which the right part was t

and whose parent had context c. Similarly, a value R t c represents the right

part of a branch of which the left part was t and whose parent had context

c. The value Top represents the top of the tree. Returning to our example,

we may represent the context of Leaf 4 in tree as:

context = L (R (Leaf 1) Top) (Leaf 7)

which is the same as saying we go right once (R (Leaf 1) Top), to a focus

where our left side is Leaf 1 and our context is the root of the tree (Top) and

then from here we go left, to a position where our context is (R (Leaf 1) Top)

and our right side has Leaf 7.

Having defined the context of a subtree, we define a location on a tree as

one of its subtrees together with its context:

type Loc a = (a,Cxt a)

which represents a pair with a tree together with a context. We are now

ready to present the definition of useful functions that manipulate locations

on binary trees. We can define a function that goes down the left branch of

a tree:

left :: Loc Tree → Loc Tree

left (Fork l r , c) = (l ,L c r)

This function takes a tuple with a tree and a context (a Loc) and creates

a new tuple, where the left side of the tree becomes the new tree, and a

new context is created, extending the previous one with a data constructor

L whose right sides becomes the right side of the previous tree. We can also

define a function that goes down the right branch:

right :: Loc Tree → Loc Tree

right (Fork l r , c) = (r ,R l c)

62

and behaves exactly as the function left but doing the exact inverse. We also

define a function to go up on a tree location:

parent :: Loc Tree → Loc Tree

parent (t ,L c r) = (Fork t r , c)

parent (t ,R l c) = (Fork l t , c)

In the function parent , if we had a location Loc whose context was a left side

(L), we create a new location where we move the right side of the context

to a new tree and keep the left side as the context (c). We do exactly the

opposite if we had a location whose context was a right side (R). Finally, we

create a function that creates a tree location from a tree, where we create an

empty context:

zip :: Tree → Loc Tree

zip t = (t ,Top)

and another that extracts a tree from a tree location, which simply takes the

first element of the location (pair):

value :: Loc Tree → Tree

value = fst

These functions can be used, for example, to focus on the subtree Leaf 4 of

tree. Recall, by looking at Figure 3.2b that Leaf 4 was reachable by going

down the right branch of tree and then down the left branch of the resulting

subtree. So, focusing on Leaf 4 is achieved by creating a tree location, and

then going right followed by going left, as can be seen below:

subtree = left (right (zip tree))

Once the subtree that is the focus of our attention is reached, we may perform

several actions on it. One such action would be to edit that subtree: we may

want, for example, to increment its leaf value by one. Using the zipper

functions defined so far, this amounts to doing:

edit = let (Leaf v , cxt) = subtree

subtree = (Leaf (v + 1), cxt)

in value (parent (parent subtree))

63

with edit predictably yielding the result:

edited = Fork (Leaf 1)

(Fork (Leaf 5)

(Leaf 7))

The zipper data structure that we have reviewed in this section provides an

elegant and efficient way of manipulating locations inside a data structure.

In the next section we will see how we can use zippers to navigate through

LET programs.

3.2.1 Generic Zippers

In this section we will show why generic zippers are useful in handling big data

types and how we can use a specific generic zipper library to navigate through

Haskell instances of LET programs. We start by recalling the Haskell data

type presented in Section 1.4, which can also be straightforwardly obtained

from the abstract syntax of the LET language:

data Root = Root Let

data Let = Let Dcls Expr

data Dcls = Cons String Expr Dcls

| Empty

data Expr = Plus Expr Expr

| Minus Expr Expr

| Times Expr Expr

| Divide Expr Expr

| Variable String

| Constant Int

All of the data types presented here are isomorphic to the abstract gram-

mar for LET that we have seen in Section 2.3 (page 38). We have given

Haskell’s data types the same name we have given non-terminals on the ab-

stract grammar of LET, and we have given Haskell’s data constructors the

same name we have given the productions on the abstract grammar of LET.

64

Let

Plus

Variable

‘a’ ‘1’

Constant

Cons
‘a’ Empty

Constant

‘5’

Root

(a) No focus selected.

Let

Variable

‘a’ ‘1’

Constant

Cons
‘a’ Empty

Constant

‘5’

Root

Focus

(b) Focus on the production Plus.

Figure 3.3: Tree representation of zipperexample.

Using this data type, a LET program can be expressed as an element of

Root . In order to introduce the concept of zipper, we consider again a simple

LET program:

zipperexample = let a = 5

in a + 1

and its representation as an instance of the Haskell data type Root :

zipperexample = Root (Let (Cons "a" (Constant 5)

Empty)

(Plus (Variable "a")

(Constant 1)))

The visual representation of this instance can be seen in Figure 3.3a, and is

similar to the ASTs for a LET program we have seen in Section 2.3 (page 38).

In Figures 3.3a and 3.3b we can see the same tree, which is a graphic

representation of zipperexample, but in the latter we can see that a specific

position, Plus, is the focus of attention in the tree, i.e., is the place we want

to navigate to in order to perform certain operations.

We can describe the node Plus in the tree (the focus), by describing

the path that needs to be taken, starting in the top of the tree, in order

to reach the focus. In particular, we need to go down from the Root and

then right, to the right branch. This is similar to what we have seen in the

previous section, and could have followed the same technique of implementing

65

a custom, simple zipper library to perform this task. However, doing so has

two great disadvantages:

1. The Haskell data type we have created the zipper library for is ex-

tremely simple: only one data type and two data constructors, Fork

and Leaf . Implementing the library for the much more complex Root

data type would be time consuming and error prone, a task whose com-

plexity would grow with the complexity of the data type we need to

represent a language (and even though Root is more complex than Tree,

LET is still a very simple programming language);

2. Every time we need a new implementation with new data types, or

every time we need to change the current data type (for example, if

we want to update part of the language), that implies re-writing and

changing the zipper library.

For these reasons, in the embedding we will present in this work work we

use the generic zipper Haskell library of Adams [Adams, 2010]. This library

works for both homogeneous and heterogeneous data types. The library

can traverse any data type that has an instance of the Haskell’s Data and

Typeable type classes [Lämmel and Jones, 2003].

Typical of zipper libraries, this one provides a set of functions, such as up,

down, left and right that allow the programmer to easily navigate through

a generic structure. The function getHole returns the subtree which is the

current focus of attention. Furthermore, this library provides a hand full of

potentially helpful functions that we would have to manually write.

In our setting, on top of the zipper library of Adams [Adams, 2010] we

have implemented several simple abstractions that facilitate the embedding

of attribute grammars. In particular, we have defined:

• (.$) :: Zipper a → Int → Zipper a, for accessing any child of a structure

given by its index starting at 1;

• parent :: Zipper a → Zipper a, to move the focus to the parent of a

concrete node;

66

• (.|) :: Zipper a → Int → Bool , to check whether the current location is a

sibling of a tree node;

• constructor :: Zipper a → String, which returns a textual representation

of the data constructor which is the current focus of the zipper.

With these functions defined, we can easily wrap a structure in a Zipper

to navigate through it. Recall that we are using a generic zipper library, so

no additional coding is necessary to accommodate a particular structure.

In order to see the generic zippers library in action, together with our ab-

stractions, we may use the algebraic expression which represents the program

in Figure 3.3a, zipperexample, and easily wrap it in a zipper,

exprzipper = toZipper zipperexample

and check the constructor of the current node:

constructor exprzipper ≡ "Root"

which makes perfect sense since we have wrapped zipperexample inside a zipper

but have not go changed the focus on the structure. To go to the first child

and check the constructor name, we write:

child = exprzipper .$ 1

constructor child ≡ "Let"

and go to the second child (to the focus displayed on Figure 3.3b):

focus = child .$ 2

constructor focus ≡ "Plus"

Finally, we can define functions such as lexemeConstant1 :: Zipper a → Int ,

where

lexemeConstant1 (focus .$ 2) ≡ 1

extracts information from the zipper, simulating a standard lexer. Through-

out the rest of this thesis, the name of these lexeme functions will always

have the form lexemeConstructorchild, where constructor corresponds to the

67

current data constructor and child corresponds to the number of the child

whose lexeme we want to obtain.

As we will see in the next section, despite their simplicity the mechanisms

provided by zippers to navigate through structures and the abstractions we

have created on top of them are sufficiently expressive to embed AG in a

functional setting.

3.3 LET as an Embedded Attribute Grammar

With zippers introduced, we can now show how the AG presented in the

previous chapter can be specified in the functional language Haskell. On

our setting, we will use the expressive power of zippers to defined small,

modular computations that depend on other small computations in other

sites of the trees. This is exactly how we defined AGs.

We start with the inherited attribute dcli . Recall that this is an inherited

attribute that goes top-down in the tree, collecting declarations of variables.

We can define it in Haskell as:

dcli :: Zipper Root → Env

dcli ag = case (constructor ag) of

"Root" → []

→ case (constructor (parent ag)) of

"Cons" → (dcli (parent ag))

++ [lexemeCons1 (parent ag)]

"Empty"→ dcli (parent ag)

The value of dcli in the top-most position, Root , corresponds to the empty

list. For all the other positions of the tree, we have to test if the parent is a

declaration, indicated by a Cons parent, in which case we add the value of

the declared variable, or if it is anything else, in which case we just return

whatever the value of dcli is in the parent node.

This AG fragment is very similar to the attribute dcli presented in Chap-

ter 2 (page 48). For Cons for example, we say dcli is the concatenation of

information from the parent node and local information. This is similar both

68

in this Haskell fragment and in the attribute as it was defined before.

Note that the usage of the wildcard symbol (’ ’) means that we are declar-

ing dcli for all the tree nodes, whereas in the AG defined in Section 2.5 it is

only declared for a few productions. This is not a problem, as even if dcli is

only defined for a few production, which we can always do in our setting, it

behaves exactly the same everywhere, so we are simplifying its definition.

Next, we present the synthesized attribute dclo:

dclo :: Zipper Root → Env

dclo ag = case (constructor ag) of

"Root" → dclo (ag .$ 1)

"Let" → dclo (ag .$ 1)

"Cons" → dclo (ag .$ 3)

"Empty"→ dcli ag

This attribute collects the whole list of declared variables. Therefore, it goes

up the tree until the bottom-most position where it is equal to the attribute

dcli . Recall that dcli produces a list with all the declared identifiers up to

the position where it is being called, which in the bottom-most position will

equal the entire list of declared variables.

Once again, this is very similar to the AG fragment dclo from Chapter 2

(page 49), as we can easily see.

A similar approach is used when defining env :

env :: Zipper Root → Env

env ag = case (constructor ag) of

"Root"→ dclo ag

→ env (parent ag)

where we defined the attribute for the top most production and then instruct

it to go down as far as possible. These types of attributes are very common in

AG specifications as a method of distributing information everywhere in the

tree, with some AG systems providing specific constructs to allow this type

of simpler implementations (such as autocopy in Silver [Van Wyk et al.,

2008] and references to remote attributes in LRC [Kuiper and Saraiva, 1998]).

69

In this embedding, we can elegantly implement this feature using standard

primitives from the hosting language.

The last attribute we define is the one that represents the actual meaning

of the AG, errs:

errs :: Zipper Root → Error

errs ag = case (constructor ag) of

"Root" → errs (ag .$ 1)

"Let" → errs (ag .$ 1) ++ errs (ag .$ 2)

"Cons" → mNBIn (lexemeCons1 ag) (dcli ag)

++ errs (ag .$ 2) ++ errs (ag .$ 3)

"Empty" → []

"Plus" → errs (ag .$ 1) ++ errs (ag .$ 2)

"Divide" → errs (ag .$ 1) ++ errs (ag .$ 2)

"Minus" → errs (ag .$ 1) ++ errs (ag .$ 2)

"Time" → errs (ag .$ 1) ++ errs (ag .$ 2)

"Variable"→ mBIn (lexemeV ariable1 ag) (env ag)

"Constant"→ []

The only really interesting parts of the definition of this attribute are in Cons,

where we test if a declaration is unique, i.e., if it has not been declared so

far, and Variable, where we test if a variable that is currently being used has

been declared somewhere in the program. The other parts of errs either go

down the tree checking for errors, or immediately say there are no errors in

that specific position, as happens in Empty and Constant .

A difference between our embedding and the traditional definition of AG

is that in the former, an attribute is defined as a semantic function on tree

nodes, while in the latter the programmer defines on one production exactly

how many and how attributes are computed. Nevertheless, we argue that

this difference does not impose increasing implementation costs as the main

advantages of the attribute grammar setting still hold: attributes are modu-

lar, their implementation can be sectioned by sites in the tree and as we will

see inter-attribute definitions work exactly the same way.

The structured nature of our embedding might provide an easier set-

ting for debugging as the entire definition of one attribute is localized in one

70

semantic function. Furthermore, we believe that the individual attribute def-

initions in our embedding can straightforwardly be understood and derived

from their traditional definition on an attribute grammar system, as can be

observed comparing the attribute definitions in the previous section with the

ones in this section.

An advantage of the embedding of DSLs in a host language is the use

of target language features as native. In our case, this applies, e.g., to the

Haskell functions ++ and : for list concatenation and addition, whereas in

specific AG systems the set of functions is usually limited and predefined.

Also, regarding distribution of language features for dynamic loading and

separate compilation, it is possible to divide an AG in modules that, e.g.,

may contain contain data types (representing the grammar) and functions

(representing the attributes).

The zipper-based embedding AG is both a concise and elegant specifica-

tion of an attribute grammar and a correct Haskell program. This means

that we can execute the specification without the need of compiling it. For

example, if we write:

errs (toZipper (zipperexample)) ≡ []

this is a real Haskell program being interpreted.

Note this is very different from the classical implementation of AGs. sys-

tems like LRC, Silver, JastAdd or Eli compile an attribute grammar specifi-

cation (like the one presented in Chapter 2) into a target language (Java, C,

Haskell, ...). In the next section we describe approaches to AGs similar to

ours.

If we compare this AG-based approach to the ones we presented in Section

1.4, we can see that ours is different in some points:

• The circular approach was not modular, and the strict one lost the

modularity with the need to introduced intermediate data types. Our

solution is mode modular than both, as the entire computation is split

into small functions easy to change;

• Our approach does not require a lazy evaluation engine;

71

• With our approach the programmer does not have to be concerned with

function scheduling. Attributes are written individually and it is their

evaluation as a whole that represents the necessary tree traverses;

• Our approach does not require gluing data types, that require an ad-

dition effort both to be implemented and to be maintained.

3.4 Functional Embeddings of Attribute Gram-

mars

There are various approaches and techniques that relate to the one present

in this work. Next, we present such approaches.

3.4.1 Zipper-based approaches

Uustalu and Vene have shown how to embed attribute computations using

co-monadic structures, where each tree node is paired with its attribute val-

ues [Uustalu and Vene, 2005]. This approach is notable for its use of a zipper

as in our work. However, it appears that this zipper is not generic and

must be instantiated for each tree structure. Laziness is used to avoid static

scheduling. Moreover, their example is restricted to a grammar with a single

non-terminal and extension to arbitrary grammars is speculative.

Badouel et al. define attribute evaluation as zipper transformers [Badouel

et al., 2007, 2013]. While their encoding is simpler than that of Uustalu and

Vene, they also use laziness as a key aspect and the zipper representation

is similarly not generic. This is also the case of [Badouel et al., 2011], that

also requires laziness and forces the programmer to be aware of a cyclic

representation of zippers.

Yakushev et al. describe a fixed point method for defining operations on

mutually recursive data types, with which they build a generic zipper [Yaku-

shev et al., 2009]. Their approach is to translate data structures into a generic

representation on which traversals and updates can be performed, then to

translate back. Even though their zipper is generic, the implementation is

72

more complex than ours and incurs the extra overhead of translation. It

also uses more advanced features of Haskell such as type families and rank-2

types.

3.4.2 Non-zipper-based approaches

Circular programs have been used in the past to straightforwardly implement

AGs in a lazy functional language [Johnsson, 1987; Kuiper and Swierstra,

1987]. These works, in contrast to our own, rely on the target language to

be lazy, and their goal is not to embed AGs: instead they show that there

exists a direct correspondence between an attribute grammar and a circular

program.

Regarding other notable embeddings of AGs in functional languages [de Moor

et al., 2000a; Viera et al., 2009; Viera, 2013], they do not offer the modern

AG extensions that we provide, with the exception of [Viera, 2013] that uses

macros to allow the definition of higher-order attributes. Also, these em-

beddings are not based on zippers, they rely on laziness and use extensible

records [de Moor et al., 2000a] or heterogeneous collections [Viera et al.,

2009; Viera, 2013]. The use of heterogeneous lists in the second of these

approaches replaces the use in the first approach of extensible records, which

are no longer supported by the main Haskell compilers. In our framework,

attributes do not need to be collected in a data structure at all: they are

regular functions upon which correctness checks are statically performed by

the compiler. The result is a simpler and more modular embedding. On

the other hand, the use of these data structures ensures that an attribute is

computed only once, being then updated to a data structure and later found

there when necessary. In order to guarantee such a claim in our setting we

need to rely on memoization strategies, often costly in terms of performance.

Our embedding does not require the programmer to explicitly combine

different attributes nor does it require combination of the semantic rules for

a particular node in the abstract syntax tree, as is the case in the work of

Viera et al. [Viera et al., 2009; Viera, 2013]. In this sense, our implementation

requires less effort from the programmer.

73

3.5 Conclusion

In this chapter we have seen how canonical attribute grammars can be de-

scribed in a functional setting using zippers. These allow the definition of

functions with different behaviors depending on their context within a tree.

This is exactly how attributes are defined.

The solution we have seen here closely resembles the classic formalisms

for context-free and attribute grammars, with our approach being expressive

and capable of implementing the syntax and the necessary semantics for LET

on the target functional language Haskell.

In the next chapters we will see that zippers are not only powerful enough

to define classic attribute grammars, they also provide enough expressiveness

to define various attribute grammar extensions, from which we start by pre-

senting references.

74

Chapter 4

Reference Attribute Grammars

Summary

In this chapter we introduce a new extension to attribute gram-

mars: references. References allow the specification of at-

tributes whose dependencies are in random sites in the tree

allowing, for example, the definition of graph structured on ab-

stract syntax trees. The extension is presented using the at-

tribute grammar system JastAdd and an example is presented

both in this system and in our embedding.

4.1 Introduction

In the previous chapter we have seen how attribute grammars can be em-

bedded in Haskell with the support of functional zippers. In this chapter

we will introduce reference attribute grammars and show how this extension

can also be embedded in out setting.

References allow attributes to be defined with dependencies in random

sites on the AST, and not only in parent/children nodes as in classic AGs.

This allows the implementation, for example, of graph structures on the tree.

We will use zippers to embed references and define computations pointing to

random points of a tree.

75

76

Attributes

Attributes Attributes

Attributes Attributes

Attributes Attributes

Figure 4.1: Overview of what we will define in this chapter. Attributes with
references can be seen as dashed lines.

Figure 4.1 shows schematically the type of attribute grammars we will

define in this chapter. This time we will be able to define attributes that can

point to random tree sites, as can be seen by the dashed lines.

The AG system JastAdd is a well-known AG system that supports ref-

erences. We will use it to exemplify how references are used in attribute

computations within an attribute grammars. This example will also work as

example for the embedding of this new kind of attribute grammars.

4.2 Reference Attribute Grammars

Reference Attribute Grammars (RAGs) were first introduced by Magnusson

and Hedin [Hedin, 1999]. They allow attribute values to be references to

arbitrary nodes in the tree and attributes of the referenced nodes to be ac-

cessed via the references. Apart from providing access to non-local attribute

occurrences, this extension is also important for adding extensibility to AGs

and simplifying the implementation of future improvements to it.

A problem with the standard formalism for attribute grammars is that

specifications often become very low level in cases where we are dealing with

dependencies that are far from our attributes, where the properties of a

specific node has dependencies on properties of distant nodes.

With references one can define attribute with direct dependencies to any

77

site on the tree, allowing for example the construction of graph structures

within attribute grammars, and language analysis tasks such as name and

type analysis for object-oriented languages can elegantly be defined with

this extension [Hedin, 1999; Ekman and Hedin, 2006; Magnusson and Hedin,

2000]: the nodes on the AST that represent a use of a variable contain

mechanims to access its declaration to know, for example, its type.

4.2.1 Reference Attribute Grammars in JastAdd

JastAdd is a meta compilation system for generating language-based tools

such as compilers, source code analyzers, and language-sensitive editing sup-

port. It is based on a combination of attribute grammars and object-oriented

features.

A tutorial for JastAdd can be found in [Hedin, 2011], where the inner

works and the attribute grammar declarative nature of this system is ex-

plained, and keys problems are solved as examples. Here, we will just sketch

a solution that uses RAG, where we will present the key fragments of how it

would be defined on this system.

In the previous chapter, we have seen how zipper-based constructs can

be used to implement AG in a functional setting. Here we will show how an

AG extension, references, can be embedded as well.

We shall start by extending the LET programming language with nested

expressions, allowing multiple-scoped declarations of all name entities that

are used in a program. Having a hierarchy with multiple scopes is very

common in real programming languages, such as in try blocks in Java and

nested procedures in Pascal, and the example we present next is (again) valid

Haskell code:

program = let a = b + 3

c = 8

w = let c = a ∗ b

in c ∗ b

b = (c ∗ 3)− c

in c ∗ w − a

78

This example works similarly to those in previous sections, but this time

the variable w contrasts with the others as it is defined by a nested block.

Because we have a nested definition, we have to be careful: as the variable

b is not defined in this inner block, its value will come from the outer block

expression (c ∗ 3) − c, but c is defined both in the inner and in the outer

block. This means that we must use the inner c (defined to be a ∗ b) when

calculating c ∗ b but the outer c (defined to be 8) when calculating (c ∗ 3)− c.

Implementing the syntax for nested sub-expressions means extending the

AST of LET, as can be seen next:

(p1: Root) Root → Let

(p2: Let) Let → Dcls Expr

(p3: Cons) Dcls → Name Expr Dcls

(p4: ConsLet) Dcls → Name Let Dcls

(p5: Empty) Dcls → ε

(p6: Plus) Expr → Expr Expr

(p7: Minus) Expr → Expr Expr

(p8: Times) Expr → Expr Expr

(p9: Divide) Expr → Expr Expr

(p10: Var) Expr → Name

(p11: Const) Expr → Number

The only difference between this grammar and the one presented in Chap-

ter 4 (page 38) is in the production p4 . The non-terminal Dcls has one

production more, which states that a variable can now be assigned to a Let

tree, instead of the assignments we have seen so far that would only allow

assignments to expressions, as can be seen in the production p3 .

This grammar can be implemented in JastAdd as:

Root ::= Let ;

Let ::= Dcls Expr ;

abstract Dcls;

Cons : Dcls ::=<Name : String > Expr Dcls;

Empty : Dcls;

79

abstract Expr ;

Plus : Expr ::= left : Expr right : Expr ;

Minus : Expr ::= left : Expr right : Expr ;

Times : Expr ::= left : Expr right : Expr ;

Divide : Expr ::= left : Expr right : Expr ;

Variable : Expr ::=<Name : String>;

Constant : Expr ::=<Number : int>;

In JastAdd we declare tokens (lexical terminals symbols) in square brackets,

and we instantiate them as types in Java, in this case int and String. Apart

from that, it follows a notation very close to the BNF notation seen previously

for CFGs.

In order to construct a symbol table as we have seen in the previous

chapter, we could write:

import java . util .∗;
aspect ConstructSymbolTable {

syn HashMap < String ,Expr > Root .st () = getLet () . st ();

syn HashMap < String ,Expr > Let .st () = new HashMap ();

}

We use Java data types, such as HashMap, to implement our intermediate

data structures. JastAdd automatically generates getNONTERMINAL meth-

ods to access children. For example, we can see that for Root we can use a

getLet method as Let is the name of a child (in this case, the only one).

As you can see, we can use ordinary Java types for the attribute types,

and the right hand side of an equation is simply Java code. However, you

have to make sure that any right-hand side has no externally visible side

effects. By definition, attribute grammars are declarative, and no side effects

are allowed in their specification. So if another equation would like to add

something to an existing hash map attribute, you would have to clone it first.

One interesting note is that JastAdd supports the Extended Backus Naur

Form (EBNF) for attribute grammars, which means we can declare lists in

grammars using the Kleene star:

Let ::= Dcls ∗ Expr ;

80

Dcls ::=<Name : String > Expr ;

Here, the non-terminal Let contains a list of zero or more declarations (Dcls∗)
and an expression (Expr). In these cases, JastAdd generated Dcls as an

Java data type List , for which it generated the necessary functions such as

getDclsList . This technique, a characteristic of JastAdd, facilitates searching

through an AST as we have seen in the previous chapter: with canonical AGs

our solution is to create an intermediate symbol table to carry information

around.

In practice, this means we can declare name analysis on our AST as:

eq Root .getLet () . lookup (String var name) {
for (Dcls d : getDclsList ()) {

String name = d . getName ();

if (name ! = null)

return d ;

}
return null ;

}

where instead of using explicit symbol tables, we define an attribute lookup

that simply goes through the JastAdd generated List of declarations (Dcls)

that is part of our AST. In this example, getDclsList is a generated method

that returns a list on which we can define typical Java code.

In this example, lookup returns references to AST nodes when, in the list

of declarations, we find a reference to a node whose name is equal to the

argument of lookup.

This feature is not present in our embedding, but we are still able of defin-

ing references in attributes to increase the modularity of our AG solution, as

we shall see in the next section.

81

4.3 Embedding Reference Attribute Gram-

mars

We start by presenting the necessary extension on LET in order to support

nested sub-expressions. As we have seen, syntactically the language does not

change much. We only need to add a new construct to the data type Dcls:

data Dcls = ConsLet String Let Dcls

| Cons String Expr Dcls

| Empty

with ConsLet representing nested blocks of code. The rest remains exactly

as we presented in Chapter 2.

Semantically however, this adds complications to defining the scope rules

of a LET program. Nested blocks prioritize variable usage on declarations

in the same block, only defaulting to outer blocks when no information is

found. Furthermore, variables names are not exclusive throughout an entire

LET program: they can be defined with the same name as long as they exist

in different blocks.

Typical solutions to this problem involve a complex algorithm where each

block is traversed twice. This implies that for each inner block, a full traversal

of the outer block is necessary to capture variable declarations. These are

then used in the inner block together with a first traversal of the inner block to

capture the total number of variables that are needed to check for scope/name

rules. Only after the inner block is checked can the second traversal of the

outer block be performed and only then can wrong declarations and use of

identifiers be detected. The idiosyncrasies of implementing the analysis for

nested blocks is further explained in previous work [Saraiva, 1999].

In order to be able to detect multiple declarationsof identifiers, we will

need to know the level in which a variable is declared. We will therefore start

by defyning a new attribute, lev , and its equations:

lev :: Zipper a → Int

lev ag = case (constructor ag) of

"Root"→ 0

82

"Let" → case (constructor (parent ag)) of

"ConsLet"→ lev (parent ag) + 1

→ lev (parent ag)

→ lev (parent ag)

The top of the tree and the main block will be at level 0. For Let , we have to

inspect the parent node. If it is a ConsLet , we are in a nested block and we

have to increment the level value. For all the other cases, we use a strategy

that we have seen before: we use the wild card matching construct to

define lev to be equal to its value in the parent node. Again, we could define

lev independently for every tree node, but using this feature of the hosting

language simplifies the implementation and produces more concise attribute

grammars.

Next we present the attribute dcli which has the same aim as the attribute

with the same name presented in the previous section. Because we need to

access the level of declarations to check for scope errors in a program, the

new dcli holds a list with both the variable names and references to the

declaration sites of those variables.

References are implemented as zippers whose current focus is the site of

the tree we want to reference, as we can see by the type of dcli :

dcli :: Zipper Root → [(String ,Zipper Root)]

dcli ag = case (constructor ag) of

"Root"→ []

"Let" → case (constructor (parent ag)) of

"Root" → dcli (parent ag)

"ConsLet"→ env (parent ag)

→ case (constructor (parent ag)) of

"Cons" → dcli (parent ag)

++ [(lexemeCons1 (parent ag)

, parent ag)]

"ConsLet"→ dcli (parent ag)

++ [(lexemeConsLet1 (parent ag)

, parent ag)]

"Empty" → dcli (parent ag)

83

The semantics are very similar to the previous version with two big differ-

ences: first, the return type of dcli is now [(String ,Zipper Root)] and second,

the initial list of declarations in a nested block is the total environment of

the outer one (see attribute env in the previous code).

Using zippers as references, together with attributes being first-class citi-

zens in the target language, means that we can re-define the semantic function

mNBIn as:

mNBIn :: (String ,Zipper Root)→ [(String ,Zipper Root)]→ Error

mNBIn tuple [] = []

mNBIn (a1, r1) ((a2, r2) : es) = if (a1 ≡ a2) ∧ (lev r1 ≡ lev r2)

then [a1]

else mNBIn (a1, r1) es

Now mNBIn checks the both is the variable name and if the declaration level

match, extending scope rules to check for declarations only in the same scope,

as duplicated declarations in different blocks are allowed.

In this example, references are also important to support extensibility

of the AG. If all we wanted to do was check scope rules then it would be

enough to carry declaration levels in the environment. However, carrying

references makes it possible to easily extend to checking that the use of a

variable conforms to other properties of its declaration. For example, if we

wish to extend LET to include type information, the declared type could be

made available as an attribute of the declaration reference. Similarly, an

interactive facility that displays the defining expression for a variable use

could be implemented easily by following the reference.

The attribute errs follows the same semantics as we have seen in the

previous sections, with the addition of a new case to support nested blocks.

errs :: Zipper Root → Error

errs ag = case (constructor ag) of

"Root" → errs (ag .$ 1)

"Let" → errs (ag .$ 1) ++ errs (ag .$ 2)

"Cons" → mNBIn (lexemeCons1 ag , ag) (dcli ag)

++ errs (ag .$ 2) ++ errs (ag .$ 3)

84

"ConsLet" → mNBIn (lexemeConsLet1 ag , ag) (dcli ag)

++ errs (ag .$ 2) ++ errs (ag .$ 3)

"Empty" → []

"Plus" → errs (ag .$ 1) ++ errs (ag .$ 2)

"Divide" → errs (ag .$ 1) ++ errs (ag .$ 2)

"Minus" → errs (ag .$ 1) ++ errs (ag .$ 2)

"Time" → errs (ag .$ 1) ++ errs (ag .$ 2)

"Variable"→ mBIn (lexemeV ariable1 ag) (env ag)

"Constant"→ []

The attributes env and dclo remain unchanged, with the former distributing

the environment throughout the tree and the latter forcing dcli to compute

the complete list of declared variables.

With the embedded attribute grammar defined, we can execute the newly

defined semantics with:

errs (toZipper program) ≡ []

To summarize this section, references to non-local sites in the tree are rep-

resented by zippers whose focus is on the respective site. This capability

together with attributes being first-class citizens in the embedding language

provides the user with multiple ways to use AGs when developing programs

in a functional setting. In the next section we will see how another important

extension, Circular Attribute Grammars, are implemented in our setting.

4.4 Conclusions

In this chapter we have presented RAGs and provided implementations of

this extension in our zipper-base setting.

In our setting we have used the contextual nature of zippers, where a

structure always has a focus that specifies a certain position in the tree, to

elegantly provide zippers with specific nodes as references to specific positions

in a tree.

We extended our embedding of attribute grammars so that attributes are

capable of being defined through the usage of references, and the semantics

85

we defined are more modular and easier to extend than the ones defined using

canonical attribute grammars.

In the next chapter we will see further implementations of extensions of

attribute grammars in our setting. In particular we will introduce, define

and embed circular attribute computations.

86

Chapter 5

Circular Attribute Grammars

Summary

In this chapter we present a new type of attribute grammars,

where circular computations are allowed, i.e., attributes can be

defined as depending transitively on themselves. We will de-

sign and present an attribute grammar that, circularly, per-

forms transformations and optimizations in the AST of LET.

This attribute grammar will first be presented as implemented

in the AG system Kiama, a library for language processing that

supports circularity, and then in our zipper-based setting, where

we also introduce generic solutions to solve circularity.

5.1 Introduction

In the canonical definition of AGs, the semantics implemented by attributes

have to depend on other attributes that are positioned directly above of below

the current node. In the previous chapter we have seen how this limitation

can be leveraged by references, a setting in which attributes can now be

defined as depending on semantics defined for random sites in an abstract

tree. By doing so, we increased the expressiveness of attribute grammars by

allowing the definition of attributes that, for example, allow graph structures

to be defined.

87

88

Attributes

Attributes Attributes

Attributes Attributes

Attributes Attributes

Figure 5.1: Overview of what we will define in this chapter. Attributes can
now depende on themselves in circular computations.

In this chapter we will present a new extension for attribute grammars,

where attributes can depend on themselves, allowing semantics to be defined

on a recursive scheme. Such computations are only feasible when a certain

fixed point can be reached, which defines a stopping point for an otherwise

infinite and uncomputable algorithm. Figure 5.1 presents schematically this

new extension comparing the the different ones we have seen in the previous

chapters. This time, attributes can be implemented in circular computations,

as can be seen by the dashed lines.

When attributes can be circularly defined in computations that have stop-

ping conditions defined, a new group of problems become not only possible

but easier to define. We will provide an example of such a problem, where we

will define an AG capable of transforming, and therefore simplifying an AST

of LET, creating a new tree which is easier to handle and to reason about.

Circularity will be introduced using the AG system Kiama, a library that

supports various features for language processing such as tree rewritings,

pretty printings or attribute grammars, in particular circular attribute com-

putations. We will see how there can be defined in Kiama, after which we will

define them in our zipper-based setting, on which we will not only define cir-

cular attributes, we will also present generic functions that handle circularity

with minimum effort required by the user.

89

5.2 Circular Attribute Grammars

In the original definition of AGs, the definition of an attribute can depend

directly only on attributes of neighbor nodes in the tree. Being them above

or below the current node, they have to be direct neighbors. Furthermore,

the dependencies between attributes may not be cyclic. This restriction on

circular definitions on AGs is lifted by Circular Attribute Grammars (CAG),

such as the ones presented by [Farrow, 1986] and [Jones, 1990].

Definition 14. (Circular Attribute Grammar)) An attribute grammar

AG = 〈G,A,D〉 is called a circular attribute grammar if for every attribute

tree generated by the AG, DRT (T) is cyclic.

An attribute grammar is called an Circular Attribute Grammar if it has

an attribute that depends transitively on itself. CAGs allow an attribute to

have a circular dependency between other attributes on the condition that a

fixed point can necessarily be reached for all possible attribute trees. This

is guaranteed if the circular dependencies between the attributes are defined

by a monotonic computation that necessarily reaches a stopping condition,

i.e., all circular attributes (attributes involved in a cyclic dependency) have

a fixed point that can be computed with a finite number of iterations.

In this chapter we will consider LET with sub-expressions, as presented

earlier, but we are now interested in computing the result of a program,

instead of the name analysis for which we have already defined AGs. We will

do so through circular attributes.

The general idea is to start with a bottom value, ⊥, and compute approx-

imations of the final result until it is not changed anymore, that is, the least

fixed point: x = ⊥; x = f(x); x = f(f(x)); ... is reached. To guarantee

the termination of this computation, it must be possible to test the equality

of the result (with ⊥ being its smallest value). All in all, the computation

will return a final result of the form f(f(...f(⊥)...)).

Of course, this solution might produce an infinite loop in cases where

circular variable declarations are present, such as in this LET program:

invalid = let x = y

90

y = let a = b

b = a

in b

in x + y + 1

There is no fixed point in this case to compute the result of this program.

Fortunately, this kind of program is invalid so our computations do not take

them into account.

CAGs have multiple applications, and works such as [Farrow, 1986; Jones,

1990; Sasaki and Sassa, 2004] have shown how circular definitions in AGs

provide simple specifications for problems from different areas such as code

optimization and transformation or data flow analysis. In this chapter, we

will see an example of an CAG implementation capable of performing the

former.

One example of the utility of CAGs lies in handling abstract trees of the

LET language, as a circular attribute computation on a AST of a LET program

can be used to iteratively simplify the tree for further processing.

We have presented in Chapter 4 a version of LET with nested sub-expressions,

and defined an AG capable of performing name analysis for this version of

the language. However, we have never provided an AG capable of calculating

the meaning of a program, i.e., calculating its resulting value.

Since we have already defined and implemented the scope rules for LET,

we can relax when defining and implementing the semantics of the symbol

table (and when solving it, as we will see in the next section) and rely on

the fact that our scope rules ensure the program is semantically correct. For

example, we can freely search for a variable being used in an expression with

the assurance that it is well declared and we will find it somewhere.

Due to the complex nature of LET, with nested sub-expressions and a

declare-anywhere discipline, the task of providing a meaning for the language

is complex and involves multiple tree traversals. Therefore, in this section

we will provide an AG that is capable of ”flattening” a LET program1.

1This step is not strictly necessary, as the meaning of LET can be calculated without
this step. In Chapter 5 we will see a method of obtaining a meaning for this language
without any ”flattening”.

91

By flattening we mean capable of transforming a complex AST into one

where all variables are assigned to their partial result, not to an expression

or a nested block, and where the only expression that needs to be solved is

the one that provides the actual meaning of the language. For example, for

the program program:

program = let a = b + 3

c = 8

w = let c = a ∗ b

in c ∗ b

b = (c ∗ 3)− c

in c ∗ w − a

its ”flattened” version is

program = let a = 19

c = 8

w = 4864

b = 16

in c ∗ w − a

This process simplifies the computations for the calculation of the meaning

of LET, by avoiding a potentially very complex AST to one which is simpler

and where there is only one expression to be solved. Please note that the

resulting ”flattened” program is a (valid) program of the AG presented in

Chapter 2.

If we were to compute the result of program by hand, one would need to

start by computing the value of a and b in the outer scope, because the value

of c is known. We would then need to compute c in the inner block, with

the expression a ∗ b, after which we know the value of w , and so on. We are

using a fix-point computation to simplify program.

Next, we will see how circular attributes can be implemented in the AG

system Kiama, through the implementation of a circular computation that

”flattens” a LET program.

92

5.2.1 Circular Attribute Grammars in Kiama

Kiama [Sloane et al., 2010] is an embedding of AGs in the object oriented pro-

gramming language Scala that provides a set of features similar to specific

AG systems, such as cached, uncached, circular, higher-order and parame-

terized attributes. Similar to our embedding, Kiama Attribute Grammars use

standard Scala notations and features, such as pattern-matching functions.

With Kiama being an embedding of AGs similar to the one we are present-

ing here, there are many similarities between these two settings. The AST

for a LET program in Kiama is a good example, with an isomorphic relation

to the embedding of grammars we have seen in Haskell in Chapter 3 (page

63).

In order to embed a grammar, we declare a set of classes that correspond

to data types in Haskell (and non-terminals in the grammar), and a set of

case classes that correspond to type constructors in Haskell (and productions

in the grammar). For example, in:

case class Root (let : Let)

case class Let (dcls : Dcls, expr : Expr)

we define the non-terminals Root and Let , where Root has only one child, let

of type Let , and Let has two children (or symbols in its right-hand side, if we

see it as a grammar): dcls of type Dcls and expr of type Expr .

To define the list of declarations, we write:

sealed abstract class Dcls

case class Cons (name : String , expr : Expr , dcls : Dcls)

extends Dcls

case class ConsLet (name : String , let : Let , dcls : Dcls)

extends Dcls

case class Empty () extends Dcls

This corresponds to the non-terminal Dcls, which contains three productions.

Cons has three children, name of type String, expr of type Expr and dcls of

type Dcls. The production ConsLet is very similar to Cons but the second

child has the name let and is of type Let and the third production, Empty,

is an ε-production (contains no symbols on its right-hand side).

93

The declaration of expressions has a similar syntax:

sealed abstract class Expr

case class Plus (left : Expr , right : Expr) extends Expr

case class Minus (left : Expr , right : Expr) extends Expr

case class Times (left : Expr , right : Expr) extends Expr

case class Divide (left : Expr , right : Expr) extends Expr

case class Variable (name : String) extends Expr

case class Constant (value : Int) extends Expr

where we define the non-terminal Expr with 6 productions: Plus, Minus,

Times, Divide, Variable and Constant .

Returning to CAGs, we can define the circular computation that goes

through a tree and continually transforms it until a specific fixed point is

reached. The circularity here is present in the form of an attribute that is

repeatedly iterated, and therefore depends on itself as new iterations use the

result of previous ones.

Kiama provides mechanisms for circular attribute computations, meaning

that their creation is extremely simple. In particular, it provides a circular

function that enables circular attributes to be defined. Its general form is:

val a : U ⇒ V =

circular (v) {
case...⇒ ...

...

}

where v (of type V) is the initial value of the circular attribute, and the cases

are used to define values in terms of other attributes, that can potentially be

circular.

For the particular case of ”flattening” LET through a circular attribute,

we can easily define a circular computation as:

def flattenLetFixedPoint (n : Root) : Root = {
lazy val fix : Root ⇒ Root =

circular (n) {

94

case n ⇒ flatten (fix (n))

}
fix (n)

}

The function flatten tries to ”flat” the AST as much as possible in one it-

eration. The implementation of this attribute will be provided in the next

section. For now it suffices to know its functionality, as the important part

is that in

circular (n) {...}

(n) is the initial value of the circular computation, and

case n ⇒ flatten (fix (n))

is the computation of a step in reaching the fixed point.

This circular computation starts out having the unsolved AST n as the

initial value, and the step function applies flatten to the tree in order to

perform an iteration. When the result of flatten is equal to its original input,

we are done and the fixed point was reached.

In the next section we will present an implementation of a similar circular

computation using our zipper-based embedding.

5.3 Embedding Circular Attribute Grammars

We have described CAGs and provided a small example, implemented in

the embedded AG setting Kiama, of a circular computation that simplifies

an abstract tree of a LET program. In this section we will see a complete

implementation of a circular computation using our zipper-based setting.

We have seen how Kiama provides a specific primitive for defining circular

attributes. In our setting, we have defined a specific generic function that is

capable of performing the same fixed point computations, called fixed point :

fixed point :: Zipper a → (Zipper a → Bool)→ (Zipper a → b)

→ (Zipper a → Zipper a)→ b

95

fixed point ag cond calc incre =

if cond ag

then calc ag

else fixed point (incre ag) cond calc incre

The arguments of this function are as follows:

• ag :: Zipper a: the tree on which we want to compute the fixed point

computation.

• cond :: Zipper a → Bool : a function that takes a tree and returns a

Boolean value that signals when the fixed point has been achieved.

As we have seen above, the traditional definition of the fixed point

states that computation stops when equality is achieved, i.e., when the

result of a computation is equal to its input. Here we have extended

this definition to use any user-defined Boolean-value attribute to define

the stopping condition as it can allow more powerful and/or efficient

computations to be defined.

In the case of LET, for example, the user can define an attribute that

not only checks for the total resolution of all variables but also checks

if the expression that represents the meaning of a program does not

require any complex resolution because it only contains values.

• calc :: Zipper a → b: a computation that is performed after the fixed

point has been reached. For example, the computation might calculate

the value of the top expression of the symbol table after all declarations

have been resolved. The identity function can be passed as calc if the

user does not want an additional computation to be applied after the

circular computation.

• incre :: Zipper a → Zipper a: an attribute that performs an iteration of

the circular computation. It returns a new structure that is checked

using cond and, if a fixed point is not reached, is used as the input for

the next iteration.

96

The type b is the type of the final result of the circular computation, provided

by calc. If the identity function is used, b will be Zipper a.

Returning to our running example, we need to define a set of attributes

that we will use as arguments to fixed point . We shall start by defining the

attribute isSolved , which checks for the termination of the circular computa-

tion:

isSolved :: Zipper Root → Bool

isSolved ag = case (constructor ag) of

"Root" → isSolved $ ag .$ 1

"Let" → isSolved $ ag .$ 1

"Cons" → (isConstant $ ag .$ 2) ∧ (isSolved $ ag .$ 3)

"ConsLet" → False

"EmptyList"→ True

This attribute checks if the AST is already solved, i.e., if all the attribute

assignments are in their ”flat” form, which is the same as saying that they

are assigned directly to a constant. The interesting part of this attribute is

its definition in the tree node Cons. Here we check if the right-hand side of

the assignment, which corresponds to the second node, is a constant with

the local attribute isConstant , and continue checking for the rest of the list.

If we find a ConsLet we can return False right away as a ”flattened” version

of LET does not have nested expressions.

One important note is how local attributes can be easily implemented in

our zipper-based setting as a small function. This is the case of isConstant ,

as can be seen below:

isConstant :: Zipper Root → Bool

isConstant ag = case (constructor ag) of

"Constant"→ True

→ False

The attribute that performs one iteration in this circular computation is

called flatAG. This attribute will traverse the tree once while constructing a

new one with as many ”flat” assignments as it can perform in one iteration.

It is defined as:

97

flatAG :: Zipper Root → Root

flatAG ag = case (constructor ag) of

"Root"→ Root (flatLet (ag .$ 1))

and for the tree node Root it simply rebuilds the top of the tree and calls a

new attribute to continue the process:

flatLet :: Zipper Root → Let

flatLet ag = case (constructor ag) of

"Let"→ Let (flatDcls (ag .$ 1)) (lexemeLet2 ag)

In the same way the process of flattening was extremely simple for the top

production of the tree, it is equally simple for the production Let . As none

of them have assignments, their only job is to recursively call an attribute

that goes down the tree while rebuilding the tree nodes they are specified in.

Therefore, flatLet creates a new tree with the tree node Let and calls a

new attribute flatDcls, that is implemented for the data type Dcls (please

remember that we can see the data types in our embedding as non-terminals

in a grammar, so we can equally say that flatLet is defined for the non-

terminal Dcls). Its definition can be seen below:

flatDcls :: Zipper Root → Dcls

flatDcls ag = case (constructor ag) of

"Cons"→ if ¬ isConstant (ag .$ 2) ∧ isSolvable (ag .$ 2)

then Cons lexemeCons1 ag

Constant (calculate (ag .$ 2))

flatDcls (ag .$ 3)

else Cons lexemeCons1 ag

lexemeCons2 ag

flatDcls (ag .$ 3)

"ConsLet" → if isSolved (ag .$ 2)

then Cons lexemeConsLet1 ag

Constant (calculate (ag .$ 2))

flatDcls (ag .$ 3)

else ConsLet lexemeConsLet1 ag

flatLet (ag .$ 2)

98

flatDcls (ag .$ 3)

"EmptyList"→ EmptyList

The attribute flatDcls is responsible for performing the actual ”flattening”

on variable assignments. For the tree node Cons, we have to check if 1) the

assignment is not to a constant (is already ”flat”) and 2) if the expression

is solvable. If this happens, we can reconstruct a tree with a ”flatted” as-

signment using the attribute calculate, and continue recursively to the rest

of the declarations list. If this condition does not hold, it means that either

the assignment is already to a constant or the expression can not be solved,

in which case we will have to wait for the next iteration of the circular com-

putation. In this case, we just reconstruct the tree as it was.

The semantics for the tree node ConsLet are very similar to Cons. This

time we do not need to check if the assignment is already ”flat” as we are

dealing with a nested expression, which is what we want to eliminate in he

first place. The only condition we need to check is if the sub-expression is

solved, in which case we can transform the current tree node into a Cons,

again with the help of the attribute calculate. Otherwise we rebuild the tree

as it was.

For tree node EmptyList we only rebuild the tree, as there is nothing to

do here.

The attributes we have seen depend on a set of other attributes. The

attributes calculate and isSolvable are extremely simple, with the former being

defined as:

calculate :: Zipper Root → Int

calculate ag = case (constructor ag) of

"Root" → calculate (ag .$ 1)

"Let" → calculate (ag .$ 2)

"In" → calculate (ag .$ 1)

"Plus" → calculate (ag .$ 1) + calculate (ag .$ 2)

"Divide" → calculate (ag .$ 1) ‘div ‘ calculate (ag .$ 2)

"Minus" → calculate (ag .$ 1)− calculate (ag .$ 2)

"Time" → calculate (ag .$ 1) ∗ calculate (ag .$ 2)

"Variable"→ getVarValue (lexemeV ariable1 ag) ag

99

"Constant"→ lexemeConstant1 ag

The attribute calculate goes down the tree and applies the arithmetic op-

erations necessary to compute the value of an expression, getting the values of

variables as necessary with the attribute getVarValue. When this attribute is

called, we are absolutely sure that all the assignments of the variables needed

are already in their ”flat” form, as we only call calculate after the condition

represented by the attribute isSolvable. This attribute, which checks for the

solvability of expressions, is presented next:

isSolvable :: Zipper Root → Bool

isSolvable ag = case (constructor ag) of

"Plus" → isSolvable (ag .$ 1) ∧ isSolvable (ag .$ 2)

"Divide" → isSolvable (ag .$ 1) ∧ isSolvable (ag .$ 2)

"Minus" → isSolvable (ag .$ 1) ∧ isSolvable (ag .$ 2)

"Time" → isSolvable (ag .$ 1) ∧ isSolvable (ag .$ 2)

"Variable"→ isVarSolved (lexemeV ariable1 ag) ag

"Constant"→ True

The function isSolvable has semantics very similar to calculate: it goes down

an expression to see if it contains constants (Constant), in which case it is

solvable, or variables (Variable), in which case we have to see if this vari-

able is solved with the attribute isVarSolved . The attributes isvarSolved and

getVarValue can be defined using the same strategy used in Chapter 3, where

we defined a series of interdependent computations that were capable of

traversing the tree and capturing variables assignments. In the next chapter

we will see different techniques to define them.

With these attributes defined, we are now in a position where we can use

use the generic fixed point function and ”flatten” an AST of LET. Please recall

that this function takes four arguments: our AG in the form of a zipper, a

function that checks for termination, a function that is applied whenever the

fixed point is reached, and a function that performs one iteration.

In our case, we use fixed point as follows to successfully ”flatten” a valid

LET program.

100

solve :: Zipper Root → Zipper Root

solve ag = fixed point ag isSolved id (toZipper ◦ flatAG)

To resume the circular computation described in this section, what it does

is:

1. Try to ”flat” as much assigments as possible by checking if all the

variables they depend on are already assigned to a constant,

2. Check if everything in the tree is ”flat”,

3. Try to flat one more time until 2. holds,

4. Return the ”flatted” tree.

Although we ommit all these attributes in the previous section, when we

presented a Kiama version or a circular ”flattening” attribute, they would be

equally necessary. The exception is isSolved because, for the reasons we have

seen, we have created a setting where a circular computation can be stopped

through any user-provided stopping condition.

5.4 Conclusions

In this chapter we have seen a new extension with which we can further

extend the way we define attribute grammars and the semantics they rep-

resent. With circularity presented, we can define powerful circular recursive

computations where attribute depend only on themselves.

This methodology to solve problems using AG requires only that the user

provides the method with which each step of the computation is performed,

and a stopping point indicating when the stopping point is reached.

The approach we have seen is completely generic and can be potentially

applied to any zipper-based AG defined in our environment, which shows

how adaptable our setting is not only on defining AGs but also in defining

non canonical, and more powerful forms of this formalism.

In the next chapter we will continue the extension of attribute grammars

by introducing their higher order form.

Chapter 6

Higher Order Attribute

Grammars

Summary

In this chapter we introduce a new extension to attribute gram-

mars, higher order attribute grammars. In higher order at-

tribute grammars attributes can be tree structures which are

themselves attributable, allowing the anchoring and production

of new trees. This extension will be introduced with the AG

system LRC, and example implementations will be provided in

out zipper-based embedding.

6.1 Introduction

In the previous chapters we have seen extensions to attribute grammars that

allow attributes to have dependencies on random sites on an AST and allow

them to be circularly defined. In this chapter we will see another extension

that allows attributes to be trees that are themselves attributable.

In higher order attribute grammars attributes can be defined for the result

of other attributes. In Figure 6.1 we can see the extension to AGs we are

implementing in this chapter.

101

102

Attributes

Attributes Attributes

Attributes Attributes

Attributes Attributes

Attributes

Attributes Attributes

Figure 6.1: Overview of what we will define in this chapter. Attributes can
now define new attributable trees.

We will introduce higher order in attribute grammars through the AG

system LRC, a system that generates incremental language tools and has na-

tive support for higher order.

Similar to previous chapters, we will embed higher order using zippers

on the functional language Haskell and present an example on how this

extension can be used in the analysis of LET. We will do so by continuing the

previous example and implementing an attribute grammar that calculates

the result of a program, through higher order attributes. We will also show

how the canonical solutions from previous section can be rewritten using this

extension.

6.2 Higher Order Attribute Grammars

So far we have seen definitions of attribute grammars where the underlying

AST is fix (does not change) during attribute evaluation.

While is true complex computations can be defined using this formalism, a

power which is further extended through the addition of references as we have

seen in the previous chapter, truth is attributes are completely constrained

by their defining equations. This is not true for the abstract tree that defines

the syntax.

This limitation means that the attributes have no way of generating

trees, which can for example represent intermediate steps in a language-

103

transformation environment. The formalization of higher order attribute

grammars provides a basis for addressing the limitations of the canonical,

first order attribute grammars we have seen so far.

Higher Order Attribute Grammars (HOAGs) were first introduced by

Vogt et al. and introduce a setting where the structure tree can be expanded

as the result of attribute computations [Vogt et al., 1989]. The new parts

of the tree can themselves have semantics defined using attributes. Since

they allow multiple tree transformations through higher order attributes,

they have seen use, for example, in editing environments [Teitelbaum and

Chapman, 1990].

Comparing with traditional AGs, HOAGs provide a setting where:

• Attributes define new trees whose semantics are defined as a new set

of attributes occurrences, and

• Computations in the original tree can depend on attributes from the

new trees.

In [Vogt et al., 1989], the semantics of higher order attribute grammars

are expressed by transforming them into a first class AG. Next, we present an

HOAG written in LRC. LRC follows Vogt approach by transforming on HOAG

into a classical attribute grammar, before it produces the corresponding eval-

uator.

6.2.1 Higher Order Attribute Grammars in LRC

To demonstrate how HOAGs can be used, we will use LRC [Kuiper and

Saraiva, 1998]. LRC is a graphical language-oriented tool that accepts as

input higher order attribute grammars, specifying a language, and gener-

ates attribute generators from them. The underlying machinery of this tool

possesses efficient incremental evaluators, which use function caching and

several other optimizations. More information regarding these evaluators

and the techniques it uses can be found in [Pennings et al., 1992; Carle and

Pollock, 1996; Saraiva et al., 1997].

104

AG

getTree

ata
hoag

calc

Meaning

Figure 6.2: Higher order attribute grammars in LRC.

In LRC grammars are defined using a specific notation, which closely re-

sembles the BNF notation for the abstract CFGs we have seen in Chapter

2. In particular, we can define the AST for LET defined in the same chapter

(page 38) in LRC as:

Root : Root (Let)

;

Let : Let (Dcls Expr)

;

Dcls : Cons (Name Expr Dcls)

| Empty ()

;

Expr : Plus (Expr Expr)

| Minus (Expr Expr)

| Times (Expr Expr)

| Divide (Expr Expr)

| Variable Name

| Constant Number

;

A grammar defined in LRC is so similar to one defined using BNF that any

explanation is unnecessary. The only main different are the non-terminals

Name and Number , which are strings and numbers respectively, and that we

have to define in LRC as:

Name : Var (STR)

;

Number : Const (INT)

105

;

where we provide instructions to lexe these two symbols, providing type

informations relating Name to a string (STR) and Number to a number (INT).

Creating an higher order attribute in LRC implies writing the following

AG equations:

1. Declare a new ata (attributable attribute), and provide its type. This

is achieved with:

ata Let hoag ;

where we define a new attribute hoag, which is a tree of type Let .

2. Assign this new attribute, hoag, to an older attribute that generate the

tree which will become our new AG. To do so, we write:

hoag = AG . getTree;

where we are assigning hoag to the information produced by the at-

tribute getTree, previously defined on AG.

3. Finally, we can ask for any attribute on our new HOAG hoag (which is

why we defined it as an attributable attribute), such as:

result = hoag . calc;

where we ask for the computation of the previously defined attribute

calc.

The whole process is resumed in Figure 6.2: an attribute, getTree, gener-

ated a new attributable attribute, hoag, where new attributes can be defined,

in this case, calc. Although the example we provided recreates a process

where only one new tree is created, this process could have multiple steps

with multiple HOAGs representing, for example, multiples phases of a com-

piler.

In the next section we will see how this new type of attributes can be

embedded in our zipper-based setting.

106

6.3 Embedding Higher Order Attribute Gram-

mars

In our zipper-based embedding of AGs, HOAGs are easy to implement. As

we can take an Haskell data type, wrap it inside a zipper and define at-

tributes for it, we can easily take an attribute that produces a tree, wrap it

immediately inside a zipper and implement attribute for it.

Retuning to the circular example of the previous section, we defined an

attribute capable of simplifying a LET program, by reducing all the variable

assignments to ones that contain only a number on their right-hand sides.

As the reader may recall, this computation produced a new, simplified tree,

but the meaning of it was never defined.

Defining an HOAG that takes the ”flattened” version of the tree and

calculates its meaning is extremely simple and straightforward, as it only

implies taking a tree that was the result tree of an attribute and provide

new attributes for it. With this said, we already defined an attribute that

is capable of taking a ”flat” tree and providing its meaning: calculate, which

can be seen in the previous chapter (page 99).

The attribute calculate is capable of reducing a nested expression to its

numeric value (this is precisely what ”flattening” is). Therefore, we can

simply take the result of the circular computation from the previous chapter,

and apply this attribute to its result:

meaning :: Zipper Root → Int

meaning ag = let ata = solve ag

in calculate ata

Here, we are circularly transforming the tree with solve ag and creating an

higher order attribute (ata), which we solve with the attribute calculate.

These simple piece of code is actually taking a whole tree and providing,

through calculate, new semantics to the result of an attribute. This shows

the simplicity of both defining high order attributes and creating interactions

between different AG extensions in our setting. We created a high order

attribute that is produced using information provided by a circular attribute

107

because it was useful, and this apparently complex scheme is actually a simple

way of solving this problem. Applying meaning to our original program of

Chapter 4 (page 78) yields the expected result:

meaning program = 38893

Please note that the circular lazy solution presented in Section 1.4 would need

a major restructuring to support this computation. In our setting we just

create an higher order attribute and defined a simple zipper AG to implement

the meaning of a program.

6.3.1 Semantic Functions and Higher Order Attributes

One practical application of HOAGs is for expressing recursive functions

as AG computations. Please recall the AG presented in Chapter 3. The

attributes dcli , dclo and env were responsible for capturing variables declara-

tions, which were stored as simple lists in Haskell and, through two semantic

function, analysis of whether a variable was declared twice or was used but

not declared were performed with two Haskell functions, mBIn and mNBIn

(Section 1.4).

The problem with this approach is that although we are using AGs as a

technique to avoid complex semantic functions, where scheduling and inter-

mediate data types have to be taken into account, we still resort to them for

secondary computations, as is the case with mBIn and mNBIn. The example

provided is simple, but it does not scale well if we need to carry around more

information in the environment, such as variable types or memory allocation

information (if we are using vectors).

One solution is to transform the list of variables into a tree that we

can carry around, a solution where this tree is produced and carried by the

attributes dcli , dclo and env . This way, whenever we need to perform name

analysis we can do so with attributes for this newly defined tree structure,

to which we call an higher order attribute grammar.

One interesting application of HOAGs is in the function that provides

errors to the user. So far, the solution we have seen in Chapter 3 only creates

108

a list of variables, which neither provides any kind of contextual information

nor indicates if the problem is a duplicated declaration or a variable being

used but not declared.

Next we present a new solution for the name analysis of Chapter 3, where

we will provide contextual information to variables being used but not de-

clared, and indicate when a variable was declared twice. For example, for

the program:

faulty = let a = z + 3

c = 8

a = (c ∗ 3)− c

in (a + 7) ∗ c

our new system will produce the result:

Variable - z - undeclared.

Variable - a - declared twice.

We start by defining the data types that will carry the variables informa-

tion around the tree, in an AG fashion:

data VarList = VarList VarList String

| NoVar

This data type is a traditional recursive definition of a list, that will now

be used as our environment. It contains two constructors: VarList to store

information about declared variables, and NoVar , for an empty list of vari-

ables.

Next, we need to redefine the attribute dcli . This attribute captures all

the variable assignments in the program, and its new definition is presented

next:

dcli :: Zipper Root → VarList

dcli ag = case (constructor ag) of

"Root" → []

→ case (constructor (parent ag)) of

"Cons" → VarList (dcli (parent ag))

109

VarList

‘a’
VarList

‘c’
VarList

‘a’NoVar

Figure 6.3: Intermediate structure representing an environment. This will be
the equivalent to the attributable attribute (ata) that we saw in the previous
section on LRC.

(dcli (ag .$ 3))

"Empty"→ dcli (parent ag)

For the attributes dclo and env only their return type changes, from [String]

to VarList . As these two attributes do not generate our intermediate tree,

they just carry it around (please recall Figure 2.6, on page 54). For the

program faulty, the final attribute env would represent a tree containing the

information that can be see in Figure 6.3.

We now need to update the semantic functions mBIn and mNBIn, so they

produce textual information instead of the simpler list of variables they used

to produce. With their reimplementation, we will change mBIn and mNBIn,

so these will become attributes on an higher order attribute grammar of type

VarList , which corresponds to the tree produced by the attributes dcli , env

and dclo. Therefore, mBIn is implemented as:

mBIn :: Zipper VarList → String → String

mBIn ag name = case (constructor ag) of

"VarList"→ if (lexemeV arList2 ag ≡ name)

then ""

else mBIn (ag .$ 1) name

"NoVar" → "Variable - " ++ name ++ " - undeclared"

If a variable must be in (mBIn) the environment and we can not find it, it

means it was undeclared. The attribute mNBIn suffers a similar upgrade:

mNBIn :: Zipper VarList → String → String

mNBIn ag name = case (constructor ag) of

110

"VarList"→ if (lexemeV arList2 ag ≡ name)

then "Variable - " ++ name ++ " - declared twice."

else mNBIn (ag .$ 1) name

"NoVar" → ""

only this time we are checking when a variable must not be in (mNBIn) the

environment, which will mean it was declared twice.

Finally, the textual information produced has to be concatenated and

presented to the user, which is done in the attribute errs:

errs :: Zipper Root → String

errs ag = case (constructor ag) of

"Root" → errs (ag .$ 1)

"Let" → errs (ag .$ 1) ++ errs (ag .$ 2)

"Cons" → let s1 = let ata = toZipper (dcli ag)

in mNBIn ata (lexemeCons1 ag)

s2 = errs (ag .$ 2)

s3 = errs (ag .$ 3)

in s1 ++ s2 ++ s3

"Empty" → ""

"Plus" → errs (ag .$ 1) ++ errs (ag .$ 2)

"Divide" → errs (ag .$ 1) ++ errs (ag .$ 2)

"Minus" → errs (ag .$ 1) ++ errs (ag .$ 2)

"Time" → errs (ag .$ 1) ++ errs (ag .$ 2)

"Variable"→ let ata = toZipper (env ag)

in mBIn (lexemeV ariable1 ag) ata

"Constant"→ ""

In this attribute, all the information captured is transformed and concate-

nated into a string, which represents the final, textual information the user

will see. The interesting part is that the attributes dcli , dclo and env produce

a tree, but our setting requires a tree to be wrapped inside a zipper to be

considered an AG and to be attributed. Therefore, in the line:

s1 = let ata = toZipper (dcli ag)

in mNBIn ata (lexemeCons1 ag)

111

we need to create a new zipper, to which we call ata as it will work as an

HOAG on which we can run the attribute mBIn. The exact same idea has

to be applied to the production Variable.

6.4 Conclusions

In this chapter we have seen how higher order attribute grammars can be

implemented in our zipper-based setting. Higher order allows definitions

of attribute grammars in which attributes can produce results which are

themselves attribute grammars.

In our setting, creating an attribute grammar means wrapping structures

inside a zipper and creating functions that use contextual information from

that zipper to specify semantics. In practice, this means an higher order

grammar is obtained just by wrapping the result of an attribute inside a

zipper and defining the supporting functions, making it a powerful extension

that is extremely easy to implement.

In the next chapter we will see how our setting allows the combination of

higher order and circularity.

112

Chapter 7

Circular and Higher Order

Attribute Grammars

Summary

In this chapter we introduce one technique of defining seman-

tics for a language where we define an higher order attribute

containing a circular computation. This solution shows how we

can combine two of the AG extensions we have presented so far

and define semantics where their usage is intermingled in the

final solution.

7.1 Introduction

In this chapter we will present an example of how circular and higher order

attribute grammars can be combined. We will use our running example to

define yet another approach to provide a meaning for a LET program. This

solution does not require the tree ”flattening” operation we have seen in

Chapter 5.

In the solution we will present, we will start with an AST of a program

on which we implement an attribute which is at the same type circular and

of higher order. In particular, we will construct an higher-order symbol table

of a LET program and circularly solve it until we can easily extract a meaning

113

114

Attributes

Attributes Attributes

Attributes Attributes

Attributes Attributes

Attributes

Attributes Attributes

Figure 7.1: Overview of what we will define in this chapter. In our setting
we can apply circular computations on higher order attributes.

from it. This is presented in Figure 7.1. As we see, we are capable of defining

higher order attribute on which we apply the circular computations seen in

Chapter 5.

Defining a circular attribute for tree transformation is not new. In [Söderberg

and Hedin, 2013] the authors investigate how circular attributes can interact

with tree rewriting, while creating well defined AGs. A generalized evaluation

algorithm that can handle grammars with interdependent circular attributes

and tree rewrites is also presented, a technique that the authors define as

being a particular case of circular RAGs.

In the definition we will present we will not use references, but we will

circularly construct and reconstruct an higher order attribute grammar in

order to define the semantics of LET.

7.2 A Symbol Table as an Higher Order At-

tribute

In this section we will see another technique for defining the semantics for LET,

but this time we will do so without going through intermediate ”flattening”

steps. We will define an auxiliary structure, more precisely a symbol table,

which will be modeled as an HOAG where its lookup operations will be

defined as attributes.

115

Since we have already defined and implemented the scope rules for LET,

we can relax when defining and implementing the semantics of the symbol

table (and when solving it, as we will see in the next chapter) and rely on

the fact that our scope rules ensure the program is semantically correct. For

example, we can freely search for a variable being used in an expression with

the guarantee that it is well declared and we will find it somewhere.

We choose to use nested symbol tables whose structure closely resembles

the scoping structure of LET programs. The following data types define that

structure:

data RootHO = RootHO DclsHO Expr

data DclsHO = ConsHO String IsSolved Expr DclsHO

| ConsLetHO String IsSolved DclsHO DclsHO

| NestedDclsHO DclsHO Expr

| EmptyHO

data IsSolved = IsSolved Int | NotSolved

These three data types have the following functionality:

• RootHO contains the list of declarations and the final expression to be

solved.

• DclsHO has two data constructors, ConsHO and ConsLetHO, for vari-

able declarations and nested blocks respectively. These constructors

both carry the variable name as a String, and both recursively de-

fine DclsHO. However, whereas the former has an expression, the latter

carries nested information. The data constructor NestedDclsHO carries

information that corresponds to nested blocks: an expression which is

the meaning of the block, and a list with the nested declarations.

• IsSolved is added to avoid continuous checks of completion of nested

blocks and to facilitate accessing their meaning: once a nested block

or an expression is solved we change this constructor from NotSolved to

IsSolved and add its value.

116

Next, we present the attributes that create the higher order symbol table

from an abstract tree of LET. We will need two attributes to do so: one that

creates the whole list with type DclsHO, and another that creates the root

of the higher order tree that constitutes the symbol table. We shall start by

presenting the latter first:

createSTRoot :: Zipper Root → RootHO

createSTRoot ag = case (constructor ag) of

"Root"→ RootHO (createST ag) (lexemeLet2 (ag .$ 1))

Here, the first argument of RootHO is the attribute that creates the symbol

table and lexemeLet2 (ag .$ 1) extracts the expression that constitutes the

meaning of this program. Please recall that the abstract tree for LET has the

form:

Root

|

Let

/ \

/ \

Dcls Expr

|

...

and therefore to extract the top level expression we have to go to the first

child of Root , a Let , and then we can apply the lexeme function to the second

child, Expr , which is why we write lexemeLet2 (ag .$ 1).

The second attribute needed to construct the symbol table goes through

the whole program and captures declarations and nested blocks:

createST :: Zipper Root → DclsHO

createST ag = case (constructor ag) of

"Root" → createST (ag .$ 1)

"Let" → createST (ag .$ 1)

"Cons" → let var = lexemeCons1 ag

expr = lexemeCons2 ag

117

in ConsHO var NotSolved expr (createST (ag .$ 3))

"ConsLet"→ let var = lexemeConsLet1 ag

nested = let nested = createST (ag .$ 2)

expr = lexeme In 1 ((ag .$ 2) .$ 2)

in NestedDclsHO nested expr

in ConsLetHO var NotSolved nested (createST (ag .$ 3))

"Empty" → EmptyHO

The most interesting parts of this attribute are the semantics for Cons

and ConsLet . For these we extract the necessary information to construct

the symbol table, declare all the elements as NotSolved and recursively call

createST where needed, i.e., always in the tail of the program, following the

recursive structure of the language, and when nested blocks are found.

With createSTRoot and createST defined we have now created a new tree

on which attributes can be defined. The new tree can be easily transformed

into an HOAG in our setting by wrapping it inside a zipper, after which we

can define attribute computations such as the ones we have seen in previous

chapters. For example, we can define semantics that check if a variable is

solved in the symbol tree, starting with the attribute isVarSolved .

isVarSolved :: String → Zipper RootHO → Bool

isVarSolved name ag = case (constructor ag) of

"RootHO" → auxIsVarSolved name ag

"NestedDclsHO"→ auxIsVarSolved name ag

→ isVarSolved name (parent ag)

isVarSolved is an inherited attribute that takes as argument the variable

name as a string and a zipper for the current focus. The equations search

downwards either to the root of the tree (RootHO) or to the root of the

nearest nested block (NestedDclsHO). We do so to ensure that when the

auxIsVarSolved attribute is called we are searching in the whole block, start-

ing in its top most position:

auxIsVarSolved :: String → Zipper RootHO → Bool

auxIsVarSolved name ag = case (constructor ag) of

"RootHO" → auxIsVarSolved name (ag .$ 1)

118

"NestedDclsHO"→ auxIsVarSolved name (ag .$ 1)

"ConsHO" → if lexeme ConsHO Var 1 ag ≡ name

then auxIsVarSolved name (ag .$ 2)

else auxIsVarSolved name (ag .$ 4)

"ConsLetHO" → if lexeme ConsLetHO Var 1 ag ≡ name

then auxIsVarSolved name (ag .$ 2)

else auxIsVarSolved name (ag .$ 4)

"IsSolved" → True

"NotSolved" → False

"EmptyHO" → oneUpIsVarSolved name ag

The synthesized auxIsVarSolved attribute goes up the tree and searches for

the declaration of the specified variable. Here, the fact that the variables are

defined as a nested block or as an expression is not important, as in either

cases we can use the constructor isSolved . At the bottom we encounter the

production EmptyHO and the oneUpIsVarSolved attribute is called.

oneUpIsVarSolved :: String → Zipper RootHO → Bool

oneUpIsVarSolved name ag = case (constructor ag) of

"NestedDclsHO"→ isVarSolved name (parent ag)

→ oneUpIsVarSolved name (parent ag)

The only function of oneUpIsVarSolved is to go up as far as possible, jump to

a parent block, and restart the whole process again with isVarSolved .

One important note about the three attributes isVarSolved , auxIsVarSolved

and oneUpIsVarSolved is their interdependence. The first two, isVarSolved and

auxIsVarSolved , search for a variable in a block, with the former going to the

topmost position of a block and the latter going top-down in search of the

variable. In case nothing is found, oneUpIsVarSolved goes up one block. The

relation between these three attributes is illustrated in Figure 7.2.

We have defined these attributes for a tree created by an AG in the first

place, thereby creating an HOAG. In a traditional approach we would define

computations on the symbol table using semantic functions that sit outside

the AG. By using an HOAG we make it possible to define those computations

themselves using attributes. For example, the following attributes calculate

the value of a solved variable given a resolved symbol table.

119

NestedDclsHO

ConsHO

EmptyHOName

auxIsVarSolved

auxIsVarSolved

isSolved

isVarSolved

Expr

isVarSolved

isVarSolved
if

else

oneUpIsVarSolved

oneUpIsVarSolved

oneUpIsVarSolved

then
Expr

…

Figure 7.2: Dependency between isVarSolved , auxIsVarSolved and
oneUpIsVarSolved .

getVarValue :: String → Zipper RootHO → Int

getVarValue name ag = case (constructor ag) of

"RootHO" → auxGetVarValue name ag

"NestedDclsHO"→ auxGetVarValue name ag

→ getVarValue name (parent ag)

auxGetVarValue :: String → Zipper RootHO → Int

auxGetVarValue name ag = case (constructor ag) of

"RootHO" → auxGetVarValue name (ag .$ 1)

"NestedDclsHO"→ auxGetVarValue name (ag .$ 1)

"ConsHO" → if lexeme ConsHO Var 1 ag ≡ name

then auxGetVarValue name (ag .$ 2)

else auxGetVarValue name (ag .$ 4)

"ConsLetHO" → if lexeme ConsLetHO Var 1 ag ≡ name

then auxGetVarValue name (ag .$ 2)

else auxGetVarValue name (ag .$ 4)

"IsSolved" → lexeme IsSolved 1 ag

"EmptyHO" → oneUpGetVarValue name ag

oneUpGetVarValue :: String → Zipper RootHO → Int

oneUpGetVarValue name ag = case (constructor ag) of

"NestedDclsHO"→ getVarValue name (parent ag)

→ oneUpGetVarValue name (parent ag)

120

These definitions operate in a similar manner to the attributes we have al-

ready seen to check is a variable is solved, with the same type of interdepen-

dence and semantics between the three.

We have shown that we can create an HOAG representing a symbol table

of a LET program, and how semantics can be defined for it. However, from

this symbol table we can not directly calculate the meaning of a LET program.

We still need to resolve the symbol table and find the exact meaning of each

variable.

In the next section we will see how circular computations of attributes

can be used to gracefully implement the resolution of the symbol table and

finally calculate the meaning of a program.

7.3 Circularity in Higher Order Attributes

We will now show how a symbol table can be resolved using circular, fixed-

point based computation. To do so, we have to define the attributes that

will be used as arguments of fixed point , starting with the attribute that ends

the circular computation by defining the fixed point (cond):

isSolved :: Zipper RootHO → Bool

isSolved ag = case (constructor ag) of

"RootHO" → isSolved (ag .$ 1) ∨ isSolved (ag .$ 2)

"NestedDclsHO"→ isSolved (ag .$ 1)

"ConsHO" → isSolved (ag .$ 2) ∧ isSolved (ag .$ 4)

"ConsLetHO" → isSolved (ag .$ 2) ∧ isSolved (ag .$ 4)

"EmptyHO" → True

"IsSolved" → True

"NotSolved" → False

"Plus" → isSolved (ag .$ 1) ∧ isSolved (ag .$ 2)

"Divide" → isSolved (ag .$ 1) ∧ isSolved (ag .$ 2)

"Minus" → isSolved (ag .$ 1) ∧ isSolved (ag .$ 2)

"Time" → isSolved (ag .$ 1) ∧ isSolved (ag .$ 2)

"Variable" → isVarSolved (lexemeV ariable1 ag) ag

"Constant" → True

121

This attribute has very simple semantics: it just goes through the tree and

checks if either all variables are solved, or the topmost expression representing

the meaning of the program is already solved without reference to variables

(RootHO case). From this point on, the attribute tries to check if all variables

are solved, through the constructor IsSolved , or if an expression contains only

constants or solved variables.

The next attribute to be defined is solveSTRoot, which together with

solveST performs one iteration of the fixed point computation, solving as

many variables as possible.

solveSTRoot :: Zipper RootHO → Zipper RootHO

solveSTRoot ag = let solved decl = solveST (ag .$ 1)

top expr = lexeme RootHO ag

in toZipper (RootHO solved decl top expr)

In this definition the topmost expression is ignored and solveST tries to solve

the declarations. (If the meaning expression only contains constants isSolved

will notice and terminate the fixed point computation before solveSTRoot is

called.)

The attribute solveST considers a list of declarations and solves as many

as can be solved in a single pass.

solveST :: Zipper RootHO → DclsHO

solveST ag = case (constructor ag) of

"ConsHO"→
if (¬ isSolved (ag .$ 2) ∧ isSolved (ag .$ 3))

then let var = lexemeConsHO1 ag

res = IsSolved (calculate (ag .$ 3))

expr = lexemeConsHOA ag

in ConsHO var res expr (solveST (ag .$ 4))

else let var = lexemeConsHO1 ag

res = lexemeConsHO2 ag

expr = lexemeConsHO3 ag

in ConsHO var res expr (solveST (ag .$ 4)

"ConsLetHO"→
if (¬ isSolved (ag .$ 2) ∧ isSolved (ag .$ 3))

122

then let var = lexemeConsLetHO1 ag

res = IsSolved (calculate (ag .$ 3))

expr = lexemeConsLetHO3 ag

in ConsLetHO var res expr (solveST (ag .$ 4))

else let var = lexemeConsLetHO1 ag

solved = lexemeConsLetHO2 ag

newST = let newST = solveST (ag .$ 3)

expr = lexemeNestedDclsHO2 (ag .$ 3)

in NestedDclsHO newST expr

in ConsLetHO var solved newST (solveST (ag .$ 4))

"EmptyHO" → EmptyHO

"NestedDclsHO"→ solveST (ag .$ 1)

solveST attribute uses the same idea to solve variables if they are defined

as an expression or as a nested block (for the constructors ConsHO and

ConsLetHO, respectively). Recall the structure of part of the abstract tree

for a LET program:

...

|

ConsHO

/ | \ \

var | \ ...

/ \

iSolved Expr

For the ConsLetHO the list has the same structure but instead of an expres-

sion it contains a nested block.

solveST works as follows:

1. First check if the variable is not solved but if its expression/nested

block is solved (all the variables it uses are solved). This is performed

with the line ¬ isSolved (ag .$ 2) ∧ isSolved (ag .$ 3).

2. If the condition holds, we can solve the variable, which means we

calculate (defined below) the value of either the expression or the nested

block and update the constructor to isSolved .

123

3. If the condition does not hold, we cannot do anything yet, so we will

reconstruct this part of tree exactly as we read it.

• If we are dealing with a variable defined by a nest block, we will

try to see if any nested definitions can be solved, by calling solveST

in the nested block: solveST (ag .$ 3)

4. The attribute always ends by going to the next declaration, which

corresponds to the fourth child: solveST (ag .$ 4)

With the attributes isSolved and solveSTRoot defined, we only have to

define an attribute that calculates both the meaning of the program through

the symbol tree and of the expressions that define the value of variables

throughout each iteration:

calculate :: Zipper RootHO → Int

calculate ag = case (constructor ag) of

"RootHO" → calculate (ag .$ 2)

"NestedDclsHO"→ calculate (ag .$ 2)

"Plus" → calculate (ag .$ 1) + calculate (ag .$ 2)

"Divide" → calculate (ag .$ 1) / calculate (ag .$ 2)

"Minus" → calculate (ag .$ 1)− calculate (ag .$ 2)

"Time" → calculate (ag .$ 1) ∗ calculate (ag .$ 2)

"Variable" → getVarValue (lexemeV ariable1 ag) ag

"Constant" → lexemeConstant1 ag

With these attributes defined, we are now in position to use the generic

fixed point function and solve the symbol table. Please recall that this func-

tion takes four arguments: our AG in the form of a zipper, a function that

checks for termination, a function that is applied whenever the fixed point is

reached, and a function that performs one iteration.

In our case, we use fixed point as follows to successfully resolves the symbol

table and provides a meaning for a valid LET program.

solve :: Zipper Root → Int

solve ag = let ho st = toZipper (createSTRoot ag)

in fixed point ho st isSolved calculate solveSTRoot

124

As well as illustrating how circular computations can be defined to iterate

over a structure, this example also shows that circularity can easily be com-

bined with other AG extensions, in this case higher-order attributes as used

for the ho st value.

7.4 Conclusions

In this chapter we have presented one more technique that we can use in order

to define semantics for the language LET. This technique does not imply using

features except the ones already presented in the previous chapter, namely

circularity and higher order.

Because we are embedding AGs in the host language Haskell and our at-

tributes are first-class citizens, we are capable on interchanging our solutions

between them and also using other Haskell features. This is what we see in

this solution, were we create an higher-order attribute in which we can apply

an Haskell function, in this case our solution to implement circularity.

In the next chapter we will see a new feature that provides bidirectional

transformations between grammars, which are implemented as AGs and can

be embedded using our approach.

Chapter 8

Bidirectional Attribute

Grammars

Summary

In this chapter we show how rewrite rules (with non-linear right

hand sides) that specify a forward/get transformation can be in-

verted to specify a partial backward/put transformation. These

inverted rewrite rules can then be extended with additional rules

based on characteristics of the source language grammar and

forward transformations to create, under certain circumstances,

a total backward transformation. Finally, these rules are used

to generate attribute grammar specifications implementing both

transformations.

8.1 Introduction

In this chapter we will see how rewrite rules are used to define transforma-

tion specifications and how these can be automatically inverted to generate a

backward transformation in the opposite direction. We will also see different

techniques to extend and empower these transformations and for generating

the attribute grammar equations that implement the them. The work pre-

sented in this chapter can be found in the following publication: [Martins

125

126

AttributesAttributes

Figure 8.1: Overview of what we will define in this chapter. We will define
transformation specifications that provide automatic transformation between
grammars.

et al., 2014b].

We use a simple but common example to describe our approach to gen-

erating bidirectional transformation for attribute grammars. The techniques

described here are generalized and extended throughout this chapter to han-

dle more complex and interesting cases.

This is schematically represented in Figure 8.1. The transformation spec-

ifications we will present in this chapter will be capable of defining attribute

grammars that can transform between different grammars, on which we can

define attributes. In the case of our embedding, this will imply the genera-

tion of zipper-based attributes capable of transforming between Haskell data

types on which we can define attributes using the techniques we presented

in the previous chaptes.

There have been various works on this area, as data transformations are

an active research topic with multiple strategies applied on various fields,

some with a particular emphasis on rule-based approaches. Czarnecki and

Helsen [Czarnecki and Helsen, 2006] present a survey of such techniques, but

while they mention bidirectionality, they do not focus on it.

The ATLAS Transformation Language is widely used and has good tool

support, but bidirectional transformations must be manually written as a

pair of unidirectional transformations [Jouault and Kurtev, 2006]. BOTL

127

[Hibberd et al., 2007], an object-oriented transformation language, defines a

relational approach to transformation of models conforming to metamodels.

Despite discussing non bijective transformations, no specification is given

regarding how consistency should be restored when there are multiple choices

on either direction.

A well-regarded approach to bidirectional systems is through lens combi-

nators [Bohannon et al., 2006; Foster et al., 2007]. These define the semantic

foundation and a core programming language, for bidirectional transforma-

tions on tree-structured data, but it only works well for surjective (informa-

tion decreasing) transformations, our system can cope with rather heteroge-

neous source and target data types.

The approach followed in [Matsuda et al., 2007] uses a language for speci-

fying transformations very similar to the one presented in this work, with au-

tomatic derivation of the backward transformation. Similar to our approach,

this system statically checks whether changes in views are valid without per-

forming the backward transformation, but they do not provide type-solving

techniques such as the one available on our setting, where decisions between

mapping different sets of non terminals are completely automated.

In the context of attribute grammars, Yellin’s early work on bidirectional

transformations in AGs defined attribute grammar inversion [Yellin, 1988].

In attribute grammars inversion, an inverse attribute grammar computes an

input merely from an output, but in our bidirectional definition of attribute

grammars, a backward transformation can use links to the original source

to perform better transformations. Thus, our approach can produce more

realistic source trees after a change to the target.

The specifications we will see in this chapter will generate attribute gram-

mars that specify them. As the reader will see, this chapter is divided into

sections where we describe the underlying formalisms and techniques for our

bidirectional environment, followed by and sections where we show how these

can be transformed into an AG.

Whenever we need to present AG code, we will use the syntax of the AG

system Silver. We do so because this system uses DSL for AGs that closely

resembles the formalism we have presented in Chapter 2. Furthermore, as we

128

Source language: ΣE = 〈SE, FE, σE〉 where:

• SE = {E, T, F, digits, ‘ + ’, ‘− ’, ‘ ∗ ’,

‘/’, ‘(’, ‘)’, String},

• FE = {add, sub, et,mul, div, tf, nest, const, digits,
neg, ‘ + ’, ‘− ’, ‘ ∗ ’, ‘/’, ‘(’, ‘)’, String},

• σE(add) = E ‘ + ’ T → E,

σE(sub) = E ‘− ’ T → E,

σE(et) = T → E,

σE(mul) = T ‘ ∗ ’ F → T,

σE(div) = T ‘/’ F → T,

σE(tf) = F → T,

σE(nest) = ‘(’ E ‘)’→ F,

σE(neg) = ‘− ’ F → F,

σE(const) = digits→ F,

σE(digits) = String → digits,

σE(‘ + ’) = ε→ ‘ + ’,

σE(‘− ’) = ε→ ‘− ’,

σE(‘ ∗ ’) = ε→ ‘ ∗ ’,

σE(‘/’) = ε→ ‘/’,

Figure 8.2: Concrete syntax of arithmetic expressions.

129

will see, Silver supports a huge variety of techniques that help defining AGs

(including circularity, higher order and references). More important, some

of the features of Silver are very helpful in defining AG equations from our

transformation specifications. Due to its intuitive syntax, we do not need to

explain how AGs are written in Silver for the pieces of code we will present,

but special features will be presented as needed.

8.1.1 Σ-Algebra

We will define here the algebraical background that we will use to define

rewrite rules for the bidirectional system that we will present in Chapter

8. Chirica et al. [Chirica and Martin, 1979] were the first to define AG as

algebras. By doing so we benefit from existing terminology

We start by defining an operator scheme: Σ = 〈S, F, σ〉 where:

• S, a set of sorts (sort names);

• F , a set of operator or function names;

• σ, maps F to S∗ × S.

On AGs, sorts correspond to nonterminals and terminals, operators cor-

respond to production names, and signatures in σ correspond to productions.

Constants are treated as nullary operators.

Definition 15. (Σ-algebra) A Σ-algebra is defined as:

• {As}s∈S - an S-indexed family of sets, called carrier sets ;

• {fA : As1 × As2 × ...× Asn → As | f ∈ F, σ(f) = S1 × S2 × ...× Sn →
S}. For each function name f ∈ F there is a function fA over the

appropriate carrier sets in {As}s∈S as indicated by the signature of f ,

σ(f).

If the set of variables is empty, we write WΣ() or WΣ. This is the ground

word algebra containing only words with no variables, known as ground words

or ground terms.

130

An example of a word is plus(mult(a, b), c), where a, b and c are variables.

We need to order patterns (words with variables) from least specific to most

specific. We use a standard notion of specificity in that one word if more

specific than another if the set of ground terms created from all instantiations

is a subset of such ground terms for another pattern.

An important definition is the one of rule specificity. One rule is more

specific than the other if both match the same pattern but one goes further

than the other in defining patterns for subtrees, or subtrees of subtrees, and

so on.

Definition 16. (Term algebra) We define term algebras (or simply words)

for Σ = 〈S, F, σ〉, denoted WΣ(X). Let X = {Xs}s∈S be a S-indexed family

of sets of variables. Then, WΣ(X) = 〈{Ws}s∈S, {fW |f ∈ F}〉 where:

• Each fW with σ(f) = s1 × s2 × ...× sn → s builds a word of the form

f(w1, w2, ..., wn) where wi ∈ Wsi ;

• The carrier sets {Ws}s∈S are the sets of words constructed in this way.

Specifically,

1. if x ∈ Xs, then the variable x is a word in Ws;

2. if f ∈ F is a nullary function then the name f (sometimes f()) is

a wrd in Ws. That is, fW () = f ;

3. if f ∈ F , with σ(f) = s1 × s2 × ... × sn → s then the word

f(w1, w2, ..., wn), where wi ∈ Wsi , exists in Ws.

In AG terms, the ground word algebra is essentially a nice way to write

down trees, and words with variables are the same as the patterns we will use

to define transformations. The thing to note is that word algebras define our

patterns. The variables in word algebras are indexed by their type, which is

something that we also need to do. So they are an appealing way to present

our patterns.

Due to the commonality between structures in attribute grammars, al-

gebra, and rewrite rules different terms from these domains have similar

meanings. The terms term, word and tree; the terms production, operator

131

and constructor and the terms type, sort and nonterminal have the same

meaning and are interchangeable.

8.2 Simple Transformations

In this section we will see how rewrite rules are used to define transforma-

tion specifications and how these can be automatically inverted to form a

backward transformation.

Please recall the grammars for LET presented in Chapter 2 (page 36 for the

concrete grammar and page 38 for the abstract grammar), which were written

using the BNF notation for context free grammars. These two grammars are

similar to algebras and can be easily translated into an algebraic setting. To

do so, we will use Σ-Algebras, as defined in the same chapter.

In Figures 8.2 and 8.3, we can see the operator scheme ΣE for the source

language E and ΣA for the target language A, respectively. More precisely,

we can see the algebraic equivalent for the concrete and abstract grammars

presented in Section 2.3.

Non-terminal and terminal symbols become sorts. The sorts E, T , F in

SE correspond to the non-terminals commonly used in this example. The sort

digits represents an integer literal symbol, and the operator and punctuation

symbols are given sort names by quoting the symbol. For example, ‘ + ’

corresponds to the terminal symbol for the addition symbol. Strings are also

used and play the role of lexemes on scanned tokens, thus we have the sort

String.

The productions in a grammar written in an algebraic setting correspond

to operators. For example, add, sub, et,mul, div, tf, nest, neg, const ∈ FE for

the concrete syntax of Figure 8.2. The signature of each of these operators

is given by σE and is written ”backwards” from how they appear in BNF.

For example, the operator add is a ternary operator taking values of sort E,

‘ + ’, and T and creating values of type E, as denoted by:

σE(add) = E ‘ + ’ T → E.

132

Target Language: ΣA = 〈SA, FA, σA〉 where

• SA = {A, String}

• FA = {plus,minus, times, divide, constant}

• σA(plus) = A A→ A,

σA(minus) = A A→ A,

σA(times) = A A→ A,

σA(divide) = A A→ A,

σA(constant) = String → A

Figure 8.3: Abstract syntax of arithmetic expressions.

There is also a single operator for each terminal symbol. If the regular

expression that would be associated with a terminal in its scanner specifi-

cation is constant, then this operator is nullary. If it is not constant but

identifies a pattern for, say, variable names or integer constants, then we

make the signature unary with String being the single argument. We will

refer to nullary terminal operators as constant, and unary terminal operators

as non-constant. To avoid too much notational clutter we will overload sort

and operator names for those corresponding to terminal symbols.

Trees in this language are written as terms or words from the correspond-

ing word algebra, parametrized by a set of strings representing lexemes. This

algebra is technically denoted WΣ(String) but we omit String below. We

overload String to denote the sort, as in Figure 8.2, and here to denote the

carrier set of strings.

8.2.1 Specifying the Forward Transformation

As in most approaches to bidirectional transformation, the forward transfor-

mation is provided and used to generate the backward transformation. Here

we describe the structure of the forward specifications used in our approach

133

• The sort map: smget :: FE → 2FA

smget(E) = {A}, smget(T) = {A}, smget(F) = {A}

• The rewrite rules rwget:

getEA(add(l, ‘ + ’, r))→ plus(getEA(l), getTA(r))

getEA(sub(l, op, r))→ minus(getEA(l), getTA(r))

getEA(et(t))→ getTA(t)

getTA(mul(l, ‘ ∗ ’, r))→ times(getTA(l), getFA(r))

getTA(div(l, ‘/’, r))→ divide(getTA(l), getFA(r))

getTA(tf(f))→ getFA(f)

getFA(neg(‘− ’, r))→ minus(constant(”0”), getFA(r)))

getFA(nest(‘(’, e, ‘)’))→ getEA(e)

getFA(const(digits(d))→ constant(d)

Figure 8.4: Forward transformation specification.

and provide the forward transformation specification from ΣE to ΣA, which

is shown in Figure 8.4.

In defining the forward transformation, the first part of the specification

is the sort-map, which in our approach will be generalized so that the range

of the sort map is a set of sorts in the target. In our first example, this maps

all of the source sorts of expressions (E, T , and F) to the single sort for

expressions in the target/abstract scheme A.

The patterns used in the rewrite rules to specify the translation from the

source to the target are not merely terms from the (word algebra of the)

source or target language (extended with variables). We create additional

operators, based on the sort map, whose signatures include sorts from both

the source language and the target language.

From a sort map sm, we create additional operators:

134

{getXY |sm(X) = Y }

indicating that the forward (get) transformation maps an X in the source

to a Y in the target. The signatures for such operators are as expected:

σget(getXY) = Y → X, ∀X ∈ SS, Y ∈ sm(X)

.

The left and right-hand sides of the rewrite rules are then words in a

word algebra for the operator scheme that include both the source and target

operator schemes and these attribute-like operators. Left hand side and right-

hand side patterns are words in WΣget(V) for a sort-indexed set of variable

names V . Both the left and right-hand side are terms of the same target

language sort. Note that we do not have rules for sorts corresponding to

terminal symbols, they have no translation in the target.

8.2.1.1 Restrictions on the Forward Transformation

We place a number of restrictions on forward transformation specifications

from ΣS = 〈SS, F S, σS〉 to ΣT = 〈ST , F T , σT 〉 to ensure that a backward

transformation can be generated. Some of these restrictions are removed in

later sections. We also assume only type correct words are used here and

throughout the rest of this thesis.

1. First, |sm(X)| 6 1, X ∈ SS. Each sort in the source maps to one or

zero items in the target;

2. Second, words on the left-hand side of a rewrite rule must have the form

getXY (p(v1, ..., vn)) for some p ∈ F S in which v1, . . . , vn are variables or

are terms that do not contain variables.

Furthermore, all variables on the left-hand side must either (i) appear

on the right-hand side, or (ii) be of a sort that contains only one value,

for example the sorts of so-called constant terminal symbols;

135

3. When viewed as patterns, the words on the left-hand side of the rules

must not be overlapping, that is there can be no substitution of their

variables that results in the same word;

4. We also need to ensure that the forward transformation specifies a total

function from ΣS to ΣT ;

Definition 17. (Total transformation) A transformation specifica-

tion from source ΣS = 〈SS, F S, σS〉 to target ΣT = 〈ST , F T , σT 〉 is

said to be a total transformation if and only if for each X ∈ SS and

Y ∈ sm(X) there exists a rule with the left-hand side of the form

getXY (p(v1, ..., vn)) for each p ∈ F S in which v1, . . . , vn are variables.

In terms of attribute grammars this is the definition of an attribute

grammar that passes the closure test ([Knuth, 1968]);

5. Words on the right-hand side are also restricted. For a rule with the

left-hand side getXY (p(v1, ..., vn)) the right-hand side must be a word in

which for any sub-word of the form getX
′

Y ′ (w) the word w must be a

variable. We will lift this restriction in a later sections on this chapter.

8.2.1.2 Generating Attribute Grammar Equations

Since our aim is to implement both the forward, and generated backward,

transformations in attribute grammars we need to convert the rewrite rules

to attribute grammar equations.

Generating attribute grammar equations from rules of this type specified

above is quite straightforward. For example, the rule:

getEA(add(l, ‘ + ’, r))→ plus(getEA(l), getTA(r))

is expressed as the following attribute grammar equation on the add pro-

duction that has the signature e :: E ::= l :: E ‘ + ’r :: T :

e.getEA = plus(l.getEA, r.get
T
A)

136

• The sort map: smput :: FA → 2FE
, smput(A) = {E, T, F}

• The rewrite rules rwput

putAE(plus(l, r))→ add(putAE(l), ‘ + ’, putAT (r))

putAE(minus(l, r))→ sub(putAE(r), ‘− ’, putAT (r))

putAE(minus(constant(”0”), r))→ neg(‘− ’, putAF (r))

putAE(t)→ et(putAT (t))

putAT (times(l, r))→ mul(putAT (l), ‘ ∗ ’, putAF (r))

putAT (divide(l, r))→ div(putAT (l), ‘/’, putAF (r))

putAT (f)→ tf(putAF (f))

putAF (e)→ nest(‘(’, putAE(e), ‘)’)

putAF (constant(d))→ const(digits(d))

Figure 8.5: Backward transformation generated by the direct inversion of the
forward transformation specification of Figure 8.4.

This means that the attribute e.getEA is generating a a tree starting with

the node Plus, and wil apply the attribute getEA to generate its left side and

the attribute getTA to generate the right one.

In later examples we will see that rewrite rules can be more complex and

thus the translation to attribute grammar code is less direct, but for now

this definition suffices.

8.2.2 Generating the Backward Transformation

In this section we describe the process for inverting the forward transforma-

tion to generate the backward one.

8.2.2.1 Inverting the Sort Map and Rewrite Rules

The first step is to invert the sort map. In our example this inversion leads

to a sort map smput that maps the abstract sort A back to three concrete

137

sorts E, T , and F . The inverted sort map now maps target sorts to multiple

source sorts. Thus, we really are defining 3 put transformations: putting an

A back to an E, back to a T , and back to an F . This is the basis for the

put operators that are analogous to the get operators seen in the previous

section.

The second step is to invert the rewrite rules. The result of this process for

the rules in Figure 8.4 produces the rules in Figure 8.5. Given the restriction

on the forward transformation, this process is relatively straightforward. A

rule of the form

getXY (w(v1, ..., vn))→ w′(getX1
Y1

(v1), . . . , getX1
Y1

(vn))

where vi is of sort Xi and sm(Xi) = {Yi} is inverted to form the rule

putYX(w′(v′1, . . . v
′
n))→ w(putY1

X1
(v′1), . . . , putYn

Xn
(v′n))

in which the variables v′i are of sort Yi. This can be seen in the inverted

rules in Figure 8.5.

8.2.2.2 Extending the Rules

Consider a transformation in an abstract syntax that creates the subtree

times(, plus(,). While the second argument of mul is of sort F , plus

maps most directly back to an E. Thus the backward transformation must

create a source term of type F from term plus(,).

The key to solve this problem lies in the rules with a right-hand side of

the form

putYX(v)→ w(putYX′(v))

where w is a word containing the sub-word putYX′(v) which holds the only

variable, namely v. Such a rule shows how to transform any term of type X ′

in the source language to one of type X in the source language.

For example, the rule

138

putAF (e)→ nest(‘(’, putAE(e), ‘)’)

that can be seen in Figure 8.5 shows that a term of type E can be converted to

one of type F by wrapping it in parenthesis, that is, in the term nest(‘(’, , ‘)’).

We specialize the inverted rewrite rules of this form so that their left-hand

sides are of the form getXY (p(v1, . . . , vn)) for p ∈ FA in which v1, . . . , vn are

variables of the appropriate type:

1. If

(a) ∃X ∈ SS and Y ∈ sm(X) such that there does not exist a rewrite

rule whose left-hand side has the form gpXY (p(v1, . . . , vn)) for some

p ∈ F S such that return type of p is X, for some α, σΣ(p) = α→
X and for some variables v1, ..., vn, and

(b) there exists a rule of the form gpXY (t)→ w(gpXY ′(t))

then add the rule gpXY (p(v1, ..., vn))→ w(gpXY ′(p(v1, ..., vn)))

2. Repeat step 1 until no more rules can be added.

For example, the rule putAF (e)→ nest(‘(’, putAE(e), ‘)’) in Figure 8.5 shows

that a term of type E can be converted to one of type F by wrapping it in

parenthesis, that is, in the term nest(‘(’, , ‘)’).

From the original rules we would add the following rule:

putAF (plus(l, r))→ nest(‘(’, putAE(plus(l, r)), ‘)’)

and then repeat this process until we have as much extended rules as

possible. The extended, inverted rewrite rules can now be checked for totality

with the original definition of totality presented on page 135.

8.2.2.3 Generating Attribute Grammar Equations

From these extended set of rules, we generate AG equations as described

before in Section 8.2.1.2, resulting in three equations on productions such as

plus: one for putAE, putAT , and putAF .

139

 (- ,)

(REF ,)

(REF ,)

GET

(REF ,)

(REF ,) (REF ,)

(REF ,)(REF ,)

(REF ,)

(REF ,)

CHANGE

PUT

Figure 8.6: Using links back.

Notably, the generated put transformation does not add any unnecessary

parenthesis, a common problem with simple string-based printing mecha-

nisms.

8.3 Links Back: making use of the Original

Source Term

The perceptive reader might have noticed there is a specific production, neg,

for which generating attribute equations presents a new challenge. The is-

sue is that the inversion of that rule and the rule for sub creates backward

transformation rules with overlapping left-hand sides, as seen in Figure 8.5.

To address this, the get transformation adds a link back on generated

abstract (sub) trees that refers back to the respective concrete (sub) tree

that generated them.

Figure 8.6 shows this situation diagrammatically: the source tree and the

target with links back is shown on top. In transforming the target tree, links

back do not exist on newly constructed nodes as indicated by the lack of

arrows back to the source tree. The portion in the oval (in red) was newly

created, as well as the nodes on the spine to the root of the tree.

To be concrete, consider the phrase

sub(et(tf(const(digits(”0”)))), ‘− ’, x)

140

that became minus(constant(”0”), x) in the target. If the original (sub) tree

in the abstract tree was maintained during a transformation then it has a

link back to the original tree of sort E and can return that when queried for

its put attribute putAE. This ensures that we can recover the original source

tree in the put transformation, when the put transformation is mapping it

back to its original type, here E.

In practice, this means that AG code generated form the backward trans-

formation has to maintain information regarding the original tree that cre-

ated. In Silver we can use a specific feature called annotations, which are

just attributes that get assigned when the tree is constructed and before it is

given any attributes and before it is used in the construction of other tree. As

the name states, they represent only notes or additional pieces of information

glued to a tree. Annotations are defined as:

annotation link :: Link ;

nonterminal Link ;

abstract production linkE

this :: Link ::= e :: E { }

abstract production linkT

this :: Link ::= e :: T { }

abstract production linkF

this :: Link ::= e :: F { }

abstract production none

this :: Link ::= { }

where we define an annotation called link that can have four different types:

a link can be either a linkE , a linkT , a linkF or none. We then define the

nonterminal A for the abstract grammar as:

nonterminal A with link ;

Silver will automatically produce trees of type A with an extra parameter

of type Link . Therefore, we can generate attributes such as:

e.getEA = minus(l.getEA, r.get
T
A, link = linkE(this))

141

where the forward transformation automatically injects information regard-

ing the original subtree that was target of a transformation.

The backward rules can use this information on the abstract side to con-

trol the transformation. This can be seen in the generated attribute equation

for minus for putAE below:

minus : s :: A ::= l :: A r :: A

s.putAE = case s.link of

linkE(e)→ e

linkT (t)→ et(t)

linkF (f) → et(tf(f))

none → sub(l.putAE, r.put
A
E)

where the link is always used unless no link exists, in which case we have to

default to the transformation technique described in the previous section.

One important remark is that in this process, maintenance and usage of

the links back (and the canBe relation) is completely automatic and requires

no extra coding.

8.3.1 Allowing Overlapping Rewrite Rules

In order to generate equations we need to sort the rewrite rules based on the

rule specificity of the left-hand side and use this left-hand side in a case-

expression to select the most specific one.

On the transformation that have minus as domain (Figure 8.5), we sort

the rewrite rules so that the most precise one is used before the more general

ones: the transformation tries to apply putAF (minus(constant(”0”), f)) first,

because it is more specific.

The techniques described so far create a setting where we can describe

complex transformations between grammars with various non-terminals and

produce, from these rules, attribute specifications for the transformation in

both directions.

142

Source language: ΣC = 〈SC , FC , σC〉 where:

• SC = {RootC , DeclsC , DeclC , V arsC , T ypec,
‘, ’, ‘; ’, String},

• FC = {rootC , consDeclC , nilDeclC ,multiDeclC ,
consV arC , oneV arC , intTypeC , f loatTypeC ,

arrayTypeC , ‘, ’, ‘; ’, String}

• σC(rootC) = DeclsC → RootC ,

σC(consDeclC) = DeclC DeclsC → DeclsC ,

σC(nilDeclC) = ε→ DeclsC ,

σC(multiDeclC) = TypeC V arsC ‘; ’→ DeclC ,

σC(consV arC) = String ‘, ’ V arsC → V arsC ,

σC(oneV arC) = String → V arsC ,

σC(intTypeC) = ‘int’→ TypeC ,

σC(floatTypeC) = ‘float’→ TypeC ,

σC(arrayTypeC) = ‘array’ TypeC → TypeC .

Figure 8.7: Concrete syntax for declarations.

8.4 Supporting Non-linear, Compound Rules

and Partial Transformations

In this section we extend the process described above to apply to non-linear

rules and to compound rewrite rules (or simply compound rules. We also de-

scribe a means for handling two situations in which the generated backward

transformation is partial. The first is when some hand-written manipulation

of the target tree can move it back into the domain of the backward transfor-

mation, the second is fall-back case in which some portion of the backward

transformation must be written manually.

143

8.4.1 Non-linear, Compound Rule Specification

We start by presenting in Figures 8.7 and 8.8 a new pair of concrete and ab-

stract algebras/grammars. The concrete syntax allows sequences of declara-

tions of the form int x, y, z; while the abstract requires simpler declarations

of just one variable, and thus this example becomes int x; int y; int z; in

the abstract.

To support transformations such as this, we allow the right-hand side

of rewrite rules to have attribute operators (getXY) that contain a term (a

tree) instead of just a variable. Such rules are called compound rules. In

particular, for the concrete grammars defined in Figure 8.7, consider the two

rules for the production multiDeclC . These are the first two rewrite rules in

Figure 8.9.

The first rule is similar to the ones we have seen in previous sections. In

the more interesting second rule, the right-hand side creates a new term/tree

in the concrete syntax (multiDeclC(t, rest, ‘; ’)) on which we recursively ap-

ply the forward transformation getDeclC
DeclA

.

To generate the forward transformation AG equations for the first rule

we use the strategy presented in Section 8.2.1.2. For the second rule, the

same process now defines a new concrete tree and then accesses the getDeclC
DeclA

attribute on that ”locally” created tree.

This process, described in general below, creates the following equation

for the getDeclC
DeclA

on the multiDeclc production:

multiDeclc : d :: Declc ::= t :: TypeC vars :: V arsC ‘; ’

d.getDeclC
DeclA

= case d of

multiDeclC(t, oneV arC(v,),)→ varDecl(t.getTypec
TypeA

, v)

multiDeclC(t, consV arC(v, , rest),)→

seqDecl(varDecl(t.getTypeC
TypeA

, v),

(multiDeclC(t, rest,′ ;′)).getDeclC
DeclA

)

144

Target: ΣA = 〈SA, FA, σA〉 where

• SA = {RootA, DeclA, T ypeA, String}

• FA = {rootA, seqDeclA, skipDeclA, intTypeA,
f loatTypeA, arrayTypeA, String}

• σA(rootA) = DeclA → RootA,

σA(seqDeclA) = DeclA DeclA → DeclA,

σA(skipDeclA) = ε→ DeclA,

σA(varDeclA) = TypeA String → DeclA,

σA(intTypeA) = ε→ TypeA,

σA(floatTypeA) = ε→ TypeA,

σA(arrayTypeA) = TypeA → TypeA.

Figure 8.8: Abstract syntax for declarations.

8.4.2 Inverting the Rewrite Rules

Inverting the rules for multiDeclC creates non-linear rewrite rules (or simply

non-linear rules) with side conditions. The inverted rules for multiDeclC are

shown below:

• putDeclA
DeclC

(varDeclA(t, v))→

multiDeclC(putTypeA
TypeC

(t), oneV arC(v), ‘; ’)

• putDeclA
DeclC

(seqDeclA(varDecl(t, v), right))

multiDeclC(putTypeA
TypeC

(t), consV arC(v, ‘, ’, rest))

where putDeclA
DeclC

(right) = multiDeclC(putTypeA
TypeC

(t), rest, ‘; ’)

Previously, on forward transformation rules,

1. Variables on the left were wrapped with a put operator on the right of

the put rule, and

145

2. Variables on the right wrapped by a get operator became (unwrapped)

variables on the left of the put rule. This can be seen in the first

inverted rule above.

For the second rule, we generalize this process so that in the forward

transformation rules, a term trm on the right wrapped by a get operator

becomes new variable (right in the case above) on the left of the put rule

and creates a side condition of the form put(right) = trm′, where trm′ is

the result of applying this process to trm. Note that this generalized process

wraps variables of sorts in the target with a put operator, but not those with

a sort in the source. In the above example t is wrapped with putTypeA
TypeC

but

rest is not.

8.4.3 Generating Attribute Grammar Equations

Generating the attribute equations for compound, non-linear rules with side

conditions used either in the forward or generated backward transformation

requires extending the process described in the Section 8.2.1.2, where the

case-expressions are used as components in the attribute equations when

no links back to the source are applied, and thus fit into the equations as

previously specified. The pattern p in the left-hand side of the rule becomes

the pattern on the left of the case clause.

8.5 Tree Repairs

In the previous example, the sequences of declarations in the source and

target take different forms. In the source, it is a list formed by traditional

cons and nil operators. But in the target, a more general tree structure is

allowed using seq and skip (empty) operators.

Using the techniques described above, the range of the get transformation

is not the full range of valid sequences of declarations in the target and thus

the generated backward transformation is a total transformation, it is only

a partial transformation. Only sequences that have a list-like shape in the

abstract can be mapped back to the concrete.

146

• The sort map: smget :: FC → 2FA
:

smget(RootC) = {RootA},
smget(DeclA) = {DeclsC , DeclC},
smget(TypeA) = {TypeC}

• The rewrite rules rwget:

getDeclC
DeclA

(multiDeclC(t, oneV arC(v), ‘; ’))→

varDecl(getTypeC
TypeA

(t), v)

getDeclC
DeclA

(multiDeclC(t, consV arc(v, ‘, ’, rest), ‘; ’))→

seqDecl(varDecl(getTypeC
TypeA

(t), v),multiDeclC(t, rest, ‘; ’))

getRootC
RootA

(rootC(c))→ rootA(getDeclsC
DeclA

(c))

getDeclC
DeclsA

(consDeclC(d, rest))→ seqDeclA(getDeclC
DeclA

(d), getDeclsC
DeclA

(rest))

getDeclsC
DeclA

(nilDeclC())→ skipDeclA()

getTypeC
TypeA

(intTypeC())→ intTypeA()

getTypeC
TypeA

(floatTypeC())→ floatTypeA()

getTypeC
TypeA

(arrayTypeC())→ arrayTypeA()

Figure 8.9: Forward transformation specification for declarations.

147

To see this, note that the inversion of the rule:

getDeclA
DeclsC

(consDeclC(d, rest))→ seqDeclA(getDeclC
DeclA

(d), getDeclsC
DeclA

(rest))

yields the following rule, with variables changed to be more appropriate

for the abstract syntax, for the backward transformation:

seqDeclA(d1, d2)→ consDeclC(getDeclA
DeclC

(d1), getDeclsA
DeclC

(d2))

Note that from an abstract production seqDeclA, we need to get a DeclC

from the left child d1 and a Declsc from the right child d2. If d1 is of the

form varDecl(t, n) this is no problem since there will be a transformation

rule from these back to a multiDeclC , via one of the rules in Figure 8.9. But

if d1, after some transformation on the abstract tree has taken place, is a

seqDeclA or a skipDeclA then this tree is not in the domain of the backward

transformation.

However, in many cases like this, it is possible to repair such trees and

convert them back to a list-like structure so that they are in the domain of

the put transformation. This what we call a tree repair.

We extend these techniques to generated AG equations to detect if the

target tree is in the domain of the put transformation: in this case, a

needsRepairDeclA
DeclC

attribute that is true on nodes of sort DeclA that need

to be repaired before transforming back to a DeclC sort in the source.

Generating equations for a needsRepairDeclA
DeclC

attribute is quite straight-

forward since is has the same structure as the equations for the corresponding

attribute putDeclA
DeclC

. Constructed trees are replaced by false and error-cases

are replaced by true.

In such cases, the user must write attribute equations, repairDeclA
DeclC

in this

case, that convert the tree into a form that is in the domain of the put

transformation. In this case an accumulating inherited attribute can be used

to provide a DeclA with the tail of the list that should follow it. The point

being that such repairs can be made, but equations must be written by hand.

In generating the put attribute equations, the framework will then re-

148

place attribute accesses of the form n.putDeclA
DeclC

with expressions that query

the needsRepairDeclA
DeclC

attribute: if it is true the tree is first repaired before

performing the put transformation, otherwise the putDeclA
DeclC

attribute is safely

accessed.

This allows our approach to gracefully degrade in situations where the

generated backward transformation is partial, but the trees in the target can

be manipulated (repaired) to be in the domain of the generated backward

transformation. For real-world languages we expect some (hopefully small)

portions of the language may need repair, but then the generated backward

transformation can be used automatically on the rest of the language.

8.6 Embedding Bidirectional Attribute Gram-

mars

In the previous chapter we describe a system for generating attribute gram-

mar implementations of bidirectional transformations given only a specifi-

cation of the forward transformation. This approach is applied here to the

embedding of AGs using zippers. Here we sketch the structure of the gener-

ated bidirectional transformation in our zipper-based setting, while the full

details can be found in the earlier sections.

Returning to our running example of the LET language presented and

developed throughout the previous chapters, we have worked with its abstract

for as it is easier to handle and to reason about.

However, the CST of LET is as important. If we want to construct a

parser for LET, and if we want to provide the programmer with a nice syntax

for the language, we will inevitably need a concrete representation. This

representation was presented before in Chapter 2 (page 36) as a CFG, and

now we present it in the form of an Haskell data type:

data RootC = RootC LetC

data LetC = LetC DclsC InC

data DclsC = ConsLetC String LetC DclsC

| ConsAssignC String E DclsC

149

| EmptyDclsC

data E = Add E T

| Sub E T

| Et T

data T = Mul T F

| Div T F

| Tf F

data F = Nest E

| Neg F

| Var String

| Const Int

Nonterminals RootC, LetC and DclsC have a single corresponding nonterminal

in the abstract representation, Root, Let and Dcls respectively (please recall

the abstract grammar for LET presented in Chapter 2, page 38). The same is

true for their constructors/productions:

RootC → Root

LetC → Let

ConsLetC → ConsLet

ConsAssignC → ConsAssign

EmptyDclsC → EmptyDcls

Since these mappings represent a bijective relation between these con-

structors, it is very easy to have the backward transformation represented

just by the inversion of these mappings:

RootC ← Root

LetC ← Let

ConsLetC ← ConsLet

ConsAssignC ← ConsAssign

EmptyDclsC ← EmptyDcls

The expressions, on the other hand, are not so simple.

In this concrete representation we have three data types for expressions,

E , T and F , whereas we have only one in the abstract, Expr . An example of

150

the possible mappings between concrete and abstract types, with the former

on the left side, is presented next1:

Add → Plus

Sub → Minus

Et → -

Mul → Times

Div → Divide

Tf → -

Var → Variable

Const → Constant

This transformation faces the exact same problems we have seen in Sec-

tion 8.2.2.2. The constructors Et and Tf do not have corresponding construc-

tors in the abstract syntax. However, deriving the backward transformation

from these mappings presents new challenges. Some decision must be made

to determine if an Expr on the abstract side is mapped to an E , T or F and

this decision should be made for each node in the AST. The simple, naive

solution is to map every Expr back to F and wrap everything in parenthesis,

but this is far from ideal as it unnecessarily produces a complicated concrete

representation.

Also as we have seen before, the production Neg also presents additional

challenges. This production is transformed according to the mapping:

Neg (r) → Minus (Constant(0),r)

where r represents the only child of Neg, which is carried out to a subtraction

in the abstract view. However, we want to map it back to a negation on the

CST, particularly if a negation was there in the first place (i.e., the user

didn’t right 0-1 on the abstract tree on purpose).

Although on the previous sections we have seen AG code written as a

DSL in Silver, our embedding provides sufficient expressiveness to support

such transformations.

1Production Neg omitted on purpose.

151

When applying the backward transformation to a modified tree, it is

helpful to have access to the original tree to which the forward transformation

was applied so that, at least, the unmodified parts map back to their original

representation. We begin by presenting the following data type:

data Link = IsRootC RootC | IsLetC LetC | IsInC InC

| IsDclsC DclsC | IsE E | IsT T | IsF F | Empty

which represents a link to the original node in the CST for which the AST

node was created. This is the equivalent of using annotations in Silver.

All the constructors of the abstract representation are upgraded to have

this link as their last child. This process changes the abstract data type,

but maintains all the AGs we have seen in the previous sections semantically

valid. Recall that in the embedding presented in this work we call attributes

by their ordering number, which means that adding more children to the end

of a tree node does not change the order of the existing ones.

In our setting, the transformations are represented by a set of synthesized

attributes get that is named getFrom To, with From representing the type that

is being mapped to To. This is the equivalent of writing getFrom
To , using the

syntax from the previous sections.

Next, we present an example of an attribute that implements the mapping

from RootC to Root :

getRootCRoot :: Zipper RootC → Root

getRootCRoot ag = case (constructor ag) of

"RootC"→ Root (getLetCLet (ag .$ 1)) (createLink ag)

where createLink is defined as the function that takes a zipper and creates an

instance of Link . The semantics are simple and very similar to what we have

seen implemented in Silver: go through the concrete tree and create nodes

of the AST in an AG-fashion until we have gone through all the nodes in the

CST.

The function createLink simply extracts information from a zipper and

creates a Link :

createLink :: Zipper a → Link

createLink ag = case (getHole ag :: Maybe RootC) of

152

Just (e)→ IsRootC e

→ case ...

This function has to be defined for all the different type constructors (that

would appear instead of the three points), but this code is generated so no

additional effort is required by the user of the system.

As the reader might have noticed, defining AG equations in our zipper-

based embedding closely follows the implementations we have seen in Silver,

as we are using the exact same bidirectional background. For example, if

the user recalls the put attribute (defining the backward transformation) for

Add , it will ask for putExprE of its left child and putExprT of its right since

these are the correct types for its left and right children, and in our system

each Expr knows how to translate itself back to any of the E , T , or F non-

terminals. To do so, we will have exactly the same number of attributes, in

the same order.

Let us continue with a more interesting example. Next we present the

attribute that transforms parts of an abstract tree whose node is of type Expr

into nodes of the concrete tree whose type is F :

putExprF :: Zipper Root → F

putExprF ag = case (getLink ag) of

IsE e → Nest e

IsT t → Nest (Et t)

IsF f → f

Empty → case (constructor ag) of

"Plus" → let left = putExprE (ag .$ 1)

right = putExprT (ag .$ 2)

in Nest (Add left right)

"Minus"→
case (getHole ag :: Maybe Expr) of

Just (Minus (Constant 0))→ Neg (putExprF (ag .$ 2))

otherwise → let left = putExprE (ag .$ 1)

right = putExprT (ag .$ 2)

in Nest (Sub left right)

"Times"→ let left = putExprT (ag .$ 1)

153

right = putExprF (ag .$ 2)

in Nest (Et (Mul left right))

"Divide"→ let left = putExprT (ag .$ 1)

right = putExprF (ag .$ 2)

in Nest (Et (Div left right))

"Constant"→ Const (lexemeConstant1 ag)

"Variable"→ Var (lexemeV ariable1 ag)

There are a couple of important remarks regarding the implementation of

putExprF :

• The first thing the attribute computation does is extracting the link

from the target node. This is done with the function getLink .

If this link exists, we can use this information right away, and no other

analysis or computations need to be performed. This ensures that the

transformation always transforms back to a tree which is as similar as

possible to the original one.

These links back satisfy the invariant that if a node has a link back then

all of its children have a link back and there were no transformations

on that AST from its original construction from the CST.

We would use annotations in Silver, a special feature where additional

information is automatically added and managed by this system. Since

we are embedding AGs, we have to use standard Haskell features,

which is why we use traditional data types. Nevertheless, an attribute

in Silver is syntactically very similar to one in Haskell, as one can

verify.

• Whenever the types do not match, the system automatically detects if

any special constructs can be used. Take for example the line IsE e →
Nest e. The attribute detects there is a link to something of type E

that can be used, but the attribute itself must generate something of

type F . Again, this is exactly what happens in Silver.

• If there is no link back (i.e., the link is Empty), the attribute will

154

transform it into its equivalent in the concrete representation. Variable,

for example, is transformed into a Var .

• For the constructor Minus, the system is capable of detecting that this

constructor came either from a Sub or from a Neg, specializing the

transformation whenever possible, i.e., finding if the Minus has a zero

on the left side, in which case it maps to Neg.

As expected, in the full implementation of the backwards transformation

there are also the functions putExprE and putExprT , with definitions very

similar to putExprF .

One last important remark about the bidirectional system is that we are

generating all these attributes that implement transformations automatically

from specific data types for the source, the view and rewrite rules for the

forward transformation. This code generation means we can also generate

types in Haskell directly from the source and view specifications, as well as

the functions constructor and lexeme that we have been using so far, making

the boilerplate code that was until now implemented by the user an automatic

process.

8.7 Conclusions

In this chapter we have shown how rewrite rules can be used to specify for-

ward transformation, be automatically inverted to specify backward transfor-

mations, and then be implemented in attribute grammars where the quality

of the transformation is enforced.

It is important to note that the features our bidirectional system supports

are completely automatic for many applications, freeing the programmer of

having to write complex attribute equations that have to perform multiple

pattern matching, manage both the links back and their types, prioritizing

transformations, etc.

The only part of our system which is not automatic are the tree repairs,

but even in these cases we generate attributes to check for the need of repairs,

simplifying the programmers work as much as possible.

Chapter 9

Tools

Summary

In this chapter we will present a practical application of our

embedded AG system. We defined a combinator language which

creates an abstract tree that represents scheduling of processes.

This tree is given semantics with zipper-based AG technique,

and integrated into a web portal that certifies software.

9.1 Introduction

If the reader recalls the introduction of this thesis, on Chapter 1, we have

stated that our setting, with the embedding of AGs, provides a good environ-

ment for implementing DSLs in Haskell. AGs provide a good methodology

for defining semantics and Haskell’s data types and parser libraries provide

easy ways of parsing languages and instantiating ASTs.

In this chapter we will show how we used this setting to implement a

combinator language for certification process management and how that lan-

guage was used on the construction of a web portal for software analysis,

always with the support of our zipper-based environment.

The DSL we present here is produced by a set of Haskell combinators

that define an abstract syntax tree. The advantages of using this combinator

system is that type correctness is enforced, which means syntactically we

155

156

know we are dealing with a correct tree. Traditionally, this would be the

responsibility of a parser.

When we have an AST as an Haskell data type, we can use our technique

of wrapping this data type inside a zipper and define attributes as functions

over this zipper structure.

The resulted combinator language, with AG-provided semantics, supports

a portal for certifying software. The user defines a chain of certification

processes, which correspond to different analysis and transformational tools,

and that chain is transformed into an abstract representation that is analyzed

and transformed in Haskell and that ends up with the generation of low-level

scripts that implement it.

9.2 Embedding DSLs for Language Analysis

In this section we describe a domain specific language that allows program-

mers to describe in an abstract level how software artifacts can be combined

into powerful software certification processes. The DSL is the building block

of a web-based, open-source software certification portal that will be pre-

sented in the next section. This work we briefly describe here is present in

detail in [Martins et al., 2012].

Here, we will introduce the language as an embedding of a combinator

library written in the Haskell programming language. The semantics of

this language are expressed via zipper-based attribute grammars that are

embedded in Haskell, which provide a modular and incremental setting to

define the combination of software artifacts.

We understand a certification as the process of analyzing a software so-

lution while producing an information report about it. Certifications are

expected to process an Open Source Software (OSS) solution and provide

a technical analysis of it, decreasing the exposure to risk associated to the

adoption of OSS.

Also, users should be capable of combining already existing certifications

into more complex analyses. The language that we introduce in this sec-

tion aims at allowing an easy configuration of the flow of information among

157

Interface
Analysis

Java
Slicer csv2Report

Cyclomatic
Dependency

Certification 1

csvJava

Java

R
eports

aggregator

Report

Report

Certification 2

Figure 9.1: The flow of information implemented in Certification 2.

processes/tools that run either in parallel or in sequence to create certifica-

tions, and at the automatic analysis and generation of low-level scripts that

implement such configuration.

There are similar works where languages were defined to express sequen-

tial computations. In [Campos and Barbosa, 2009], an implementation of

the orchestration language Orc [Kitchin et al., 2009] is introduced as an em-

bedded domain specific language in Haskell. In this work, Orc was realized

as a combinator library using the lightweight threads and the communica-

tion and synchronization primitives provided by the Haskell library [Jones

et al., 1996]. Despite the similarities on the use of combinators written in

Haskell, this work differentiates from ours because we do not rely on any

existing orchestration language. Rather, we generate low level Perl scripts

from combinators whose inputs are direct references to system processes.

Also, our processes management does not rely on Concurrent Haskell, but

on the parallelization features of the target system via system calls on the

script.

The use of attribute grammars as the natural setting to express the em-

bedding of DSLs in Haskell is proposed in [Saraiva, 1999; Saraiva and Swier-

stra, 1999b,c; Swierstra et al., 1999]. These embeddings use powerful circular,

lazy functional programs to execute DSLs. Such circular, lazy evaluators are

a simple target implementation of AGs used by several systems [Kuiper and

Saraiva, 1998; Swierstra et al., 2004].

In Figure 9.1 we sketch the flow of information that has been specified

in order to produce a sample certification called Certification 2. This is a

certification that expects Java programs and that analyzes them according

158

to two distinct sub-processes that are independent with respect to each other

and therefore can be executed in parallel.

One-off the process chain of Certitication 2 is composed by a series of

software units, namely Java Slicer, Interface Analysis and csv2Report.

The other, which is itself a certification called Certification 1, implements

a cyclomatic dependency analysis while producing a report.

Finally, and since all certifications must produce reports that conform to

our format, the two distinct flows of information are aggregated by a reports

aggregator, a component whose single responsibility is precisely to aggregate

outputs.

9.2.1 Defining Combinators

The combinator language that we propose is written in Haskell. We start by

defining the data types for certifications and components, which we present

next:

data Certification = Certification Name ProcessingTree

data Component = Component Name InputList OutputList BashCall

data Language = Java -- .java

| C Source -- .c

| C Header -- .h

| Cpp -- .cpp

| Haskell -- .hs

| XML -- .xml

| Report -- Report XML

type Arg = String

type Name = String

type BashCall = String

type InputList = [(Arg ,Language)]

type OutputList = [(Arg ,Language)]

A certification has a name (e.g. Certification 1 as in Figure 9.1) and defines

the particular information flow to achieve a desired global analysis.

159

A component is represented by a name, the list of arguments it receives

and the list of results it produces. These lists, that are represented by type

synonyms InputList and OutputList , respectively, have similar definitions and

consist of varying numbers of arguments and results. The arguments that

are defined for a particular component are then passed to concrete bash calls.

This is the purpose of the type BashCall , which consists of the name of the

process to execute on the system.

In order to represent the flow of information defined for a certification,

we have defined the data type ProcessingTree, which is introduced next:

data ProcessingTree = RootTree ProcessingTree

| SequenceNode ProcessingTree ProcessingTree

| ParallelNode ProcessingList ProcessingTree

| ProcessCert Certification

| ProcessComp Component Arg Arg

| Input

data ProcessingList = ProcessingList ProcessingTree ProcessingList

| ProcessingListNode ProcessingTree

The simplest processing tree that we can construct is the one to define a

certification with a single component. This is expressed by the constructor

ProcessComp, which also expects a name to be associated to the component

and the specification of the options to run the component with.

A certification can also be defined by a single sub-certification, here

represented by ProcessCert. In addition to these options, more complex

certifications can be constructed by running processes in sequence, using

SequenceNode, and in parallel, using ParallelNode. Constructor ParallelNode

takes as arguments a processing list and a processing tree.

The first argument represents a list of trees whose processes can run in

parallel. The second argument is used to fulfill our requirement that all re-

sults of all parallel computations must be aggregated using a component.

Therefore, this processing tree must always be a component (and this is

ensured by our type checking mechanism that is capable of aggregating in-

160

formation into one uniform, combined output.

For sequencing operations, we define the combinator >-. This combinator

defines processes that are to be executed in a chain, i.e, where the output

of a process serves as input to the process that follows it. When sequencing

processes, it is also the case that if one of process in the chain fails the entire

chain will also fail.

The use of the combinator >- must always be preceded by the use of

constructor Input , which signals the beginning of an information flow. Then,

as many components and certifications are added as needed, as long as they

are, again, connected by >-. Next, we show an example of a chain of events

defined using this combinator:

Input>-(jSlicer , "-j", "-i")>-(iAnalysis, "-i", "-csv")>-certif

There is also a combinator that enables the parallel composition of processes,

This type of composition is actually supported by two combinators, >| and

>|>. The first one is responsible for launching a varying number of processes

in parallel, while the second is mandatory after a sequence of >|, and uses

and chains all outputs of all processes to a component that is capable of

aggregating them. Next, we present an example of how these combinators

work together:

Input>-cert3 >|

Input>-cert1>-cert5 >|

Input>-(jSlicer , "-j", "-x")>-cert8>|>(aggr , "-x", "-r")

Combinator >| takes either a processing tree, a component, a certification or

a set of processes constructed using the other combinators. The arguments

of >| must always begin by constructor Input , to give a clear idea of the flow

of information. In the case of this listing it is indeed easy to spot where the

information enters a parallel distribution.

As for combinator >|>, it is mandatory for it to appear in the end of a

parallelized set of processes. It is used to aggregate all the outputs of all

the child processes into a single standard output, and it is able of combining

varying numbers of parallel processes using an aggregation component.

161

With these combinators we are already capable of defining a certification.

Next, we present an example of a certification:

Input>-(comp1 , "-s", "-ast")>-parallel

>-(comp2 , "-h", "-r")>-cert

parallel = Input>-(comp3 , "-ast", "-x")>|

Input>-(comp4 , "-ast", "-x")>|

Input>-(comp5 , "-ast", "-x")>|>(compAggr , "-x", "-h")

In this example we have introduced a parallel computation in the middle of

a sequence of processes. This is visible through the use of the combinator

>-, which chains computations. An example of where such a scenario could

be useful is in the case of having a set of processes to analyze an AST, but

having an input as source code. This code then needs to be converted to an

AST using, in our illustration, comp1 .

Following a manual approach to implementing a script for this scenario

would lead to a complex development process. Indeed, one would have to

manually edit it to make sure the process corresponding to comp1 feeds each

process on the parallel computation (that in this case is composed by 3 sub-

processes but that could easily grow further). The parallel computations are

described with two combinators: >|, which describes sequences to be run

in parallel, and >|>, which channels all the information from the parallel

computations into an aggregator.

Furthermore, imagine that we do not want the results of the parallel

computation, but rather we want them to be compared against a repository

of results to analyze the characteristics of our AST. For this, a certification

cert has been implemented, but it does not take as input the same format

that is returned by our parallel processes.

A possible solution using our combinator language is to channel the re-

sult of the parallel processes to an auxiliary component comp2 that converts

the formats so the information can be fed to the certification. But this is

something that is not easily implemented by hand.

The overall proposal of performing everything manually would be consid-

erably difficult and error-prone. One would have to mess with legacy scripts,

162

potentially built by different programmers, to understand them, and to cre-

ate the correct chain of information. And further difficulties still need to

be resolved if one wants to ensure script robustness, and that the processes

are controlled in terms of processing times and failures, for example. This is

completely automatic in our setting.

The significant effort of manually building scripts is furthermore severely

compromised considering script evolution. Indeed, small changes in par-

ticular certification sub-processes may lead to severe overall changes being

required.

We believe that our combinator approach has the advantage of not only

making it easier to create flows of information among process, that can be eas-

ily edited, but also of being highly modular. Indeed, our combinators receive

as arguments small fragments that can be edited, managed and transformed

in simple ways. Also, it does not require a significant effort for a program-

mer to change a particular certification, making it able of producing different

results.

9.2.2 Type Checking

Since we have chosen to use Haskell in our implementation, we inherit the

advanced features of both the language and its compilers. In particular,

the powerful type system of GHC helps us providing some static guarantees

on the certifications that are developed. Indeed, the order in which the

combinators of our language are applied within a certification is not arbitrary,

and the uses that do not respect it will automatically be flagged by the

compiler.

The simplest example of this situation is the attempt to construct a pro-

cessing tree without explicitly using constructor Input , but of course more

realistic examples are also detected, e.g., not wrapping up a set of parallel

computations with the use of the combinator >| as well as the application of

an aggregator.

We also analyze if the types match in the flow of information defined for

a certification. This means that the input type of a process must match the

163

output type of the process feeding it. Taking the example on Figure 9.1, the

output type of Interface Analysis must be the same as the input type of

csv2Report, which in this case is csv.

As we have already mentioned, our type checking is performed on trees of

the type of ProcessingTree and, because we used an AG-based approach, this

analysis is broken down into tree nodes which, in our case, are represented

by the Haskell constructors of the ProcessingTree data type.

9.2.3 Script Generation

We have shown a how set of processes can elegantly be combined into a

certification, either in a sequence, in parallel or in any combinations of these

two. We have also shown how these combinators are easy to read, understand

and modify, and how we implemented a supporting type checking mechanism

that guarantees a correct match of types throughout the processing chain.

In this section we describe how we can generate Perl scripts that im-

plement the certifications that are created using our combinators. These

scripts can be seen as the low level representation of our certifications: they

describe the processing chain, handle the individual processes for their com-

pleteness and manage the flow of information throughout all the processes

the certification is made of.

The script generation follows the same AG-based strategy that we have

applied to type check our certifications. The basic idea behind it is that

each tree node, that represents a part of the processing tree, generates the

corresponding sub-piece of the global script, and that the overall meaning of

the AG is the entire, fully working, script.

Next, we present an example of a script that was generated by the fol-

lowing combination: Input>-(comp1 , "-j", "-x")>-(comp2 , "-k", "-o").

#!/usr/bin/perl

use strict;

use warnings;

use IO::CaptureOutput qw/capture_exec/;

use IO::File;

164

$| = 1;

my $stdout0 = $ARGV[0]; # This is actually stdin

my $cmd1 = "./comp1 -j -x";

my ($stdout1, $stderr1, $success1, $exit_code1)

= capture_exec($cmd1 . "<<END\n" . $stdout0 . "\nEND");

if ($?) { die "** The process $cmd1 does not exist! **"; }

if (not $success1)

{ die "** The process $cmd1 failed with msg: $stderr1 ! **";}

my $cmd2 = "./comp2 -k -o";

my ($stdout2, $stderr2, $success2, $exit_code2)

= capture_exec($cmd2 . "<<END\n" . $stdout1 . "\nEND");

if ($?) { die "** The process $cmd2 does not exist! **"; }

if (not $success2)

{ die "** The process $cmd2 failed with msg: $stderr2 ! **";}

print $stdout2;

In this script both components are executed via the system call command

capture exec, their existence is verified and their STDERR output is checked for

problems. Afterwards, their results are channeled to the process that comes

next, which in the case of the first component is the second component, and

in the case of the second component is the STDOUT of the script since the

computations ended.

The scripts that we generate perform process control and scheduling of

computations both on chained and in parallel flows of information while still

being readable and understandable. Nevertheless, constructing such scripts

manually is still an error-prone task even for small certifications with small

number of processes. A larger certification (with, e.g, over a dozen sub-

processes) would imply a significant amount of time to be implemented and

debugged, just to name some phases of the development process.

In fact, this situation would further deteriorate if we were considering in-

tegrating in our framework more advanced scripting features. We could, for

example, be interested in time-outing the processes independently to ensure

165

they do not go past a certain time frame, in controlling better the input and

output information from processes (checking, for example, if input informa-

tion is able to be processed though STDIN, i.e, respects the specific imple-

mentations on different programming languages and environments1, etc) or

in ensuring that, anytime an error occurs, the script actually creates a small

report that is integrated in the final certification instead of just showing

information through the standard STDERR.

We believe, however, that following an AG-based approach similar to our

own would facilitate the integration of these features in structured and simple

ways as one-of tasks that once achieved become automatically available for

any certification, old and new.

Furthermore, because tree nodes are modular units of an AG implemen-

tation, it is even easier to upgrade small parts of the script as needed. For

example, implementing timeout features on parallel processes would imply

changing only the corresponding attribute on the desired tree nodes.

Generating scripts automatically presents several difficulties that are or-

thogonal to any generation mechanism, including to our own AG-based set-

ting. Code translation is challenged by the usual concerns of assuring that the

result is both syntactically and semantically perfect, and that all construc-

tors/primitives/declarations of the target language are correctly declared and

used. Implementing multiple processes, for example, implies a tight control

on the variables that carry their results and their inputs.

In a chain of processes from A to B, the variable that stores the information

produced by A must be the one that feeds B, and all the variables must have

different names (and if they do not, they must be used in different execution

contexts). Also, this mechanism is even harder to implement within parallel

processing, where all the outputs are aggregated into one single process (re-

member the data type ProcessingTree on page 159, where a parallel tree node

has always a processing list and a component that aggregates information).

After defining the scope rules for variables, the script generation via the

attribution is easy to perform, once again thanks to our AG-based mecha-

nism. The code generation follows the syntactic rules of the target language

1http://en.wikipedia.org/wiki/Here_document [Accessed in 25 March, 2012]

http://en.wikipedia.org/wiki/Here_document

166

Combinator
Language

Certification
AST

Type
Checking

Script
Generation

PERL
Script

Figure 9.2: Processing the combinator DSL.

(in this case Perl) and ensures that the constructors/primitives/parenthesis

are written and in the correct form.

9.2.4 Overview

Overall, the machinery for the embedding a combinator DSL we have pre-

sented is resumed in Figure 9.2. We have the typical behavior when process-

ing languages using an AG: we create an AST, that in this case comes from

the Haskell combinators we have defined. We then attribute this AST to

perform the needed semantics.

Implemented in an AG environment, our type checking system automat-

ically guarantees that the input and output types of each sub-process are

right to the definition of a process work flow and of a certification, and do

not break such definitions, while also managing to automatically create low-

level implementations of certifications in the form of Perl scripts.

9.3 Portal

Using the combinator language presented in the previous section, we devel-

oped a web portal for the analysis and certification of OSS that aims at

improving on these three issues. The portal works as a repository for tools

that analyze source code.

Several projects have focused on the analysis and assessment of soft-

ware, being the Squale project [Squale, 2014], QSOS [QSOS, 2014] and the

Alitheia Core [Core, 2014] important examples of this. In comparison with

167

our work, we believe that potential users of these systems see their extensibil-

ity and improvement limited by custom schemas of information or domain-

specific languages for plug-ins development. This is either because these

projects are based on assessment models for OSS, or because they create

unified storage systems or even because they imply the usage of frames of

reference to create an evaluation that often depends on axis of criteria.

Our solution allows a wide range of tools based on different programming

languages and techniques to be imported into our portal, taken that such

tools are capable of running as bash tools and that they receive information

through the standard STDIN and STDOUT Unix’s streams. We believe this

includes a significant amount of already existing potential tools.

What is more, through the use of our DSL, virtually any tool in our portal

can be connected to other tools to create a flow of information (as long as

the input and output types of two chained tools match), easily allowing the

introduction of software assessments and the extension of such of assessments.

The usage of our portal is heterogeneous in that it supports the analysis

of any programming language and distributed in the sense that it makes

software analysis available in the web. Also, while already incorporating

several predefined certifications, the portal makes it very simple for any user

to re-arrange these certifications and to develop new ones: we designed and

implemented a DSL that allows portal users to define, in a high level and

abstract way, how certifications and software tools that analyze source code

can be integrated and combined. This allows the creation of personalized

analysis closely tied to the scope and nature of the necessary feedback.

The portal has been constructed out of about 320 lines of JAVASCRIPT and

of circa 1500 lines of HTML + PHP code. In fact, from these 1500 lines, around

125 interface with a simple database for storing information related to the

certifications of the portal, which itself includes 3 tables and 12 records. The

DSL that the portal provides for re-arranging certifications and components

was developed out of around 400 lines of Haskell code.

Once a certification for a particular programming language is available,

users just need to upload a file in that language to analyze it. Having done

so, our portal only presents as certification options for it the ones that match

168

its type. This means that, for example, having uploaded a Haskell file, users

will only see the certifications that are available for Haskell.

More information about this portal and the supporting framework can be

found in [Martins et al., 2014a] and [Martins et al., 2013].

9.4 Conclusions

We believe the advantages of the system we have presented here are two fold:

first, the combinators create an intuitive and simple yet powerful environment

to create not only certifications but also processes work flows in general, while

ensuring their validation.

Secondly, our AG approach can be easily transformed to carry any change

needed, both by the definitions of certifications or by processes and their work

flows. This mechanism is modular, easily extensible and upgrades on code

generation or type checking are performed of attributes, where new features

and functionalities are easy to design and implement in a modular and concise

way.

We also presented a portal for analyzing source code artifacts and pro-

viding information reports about them. Our portal supports various analysis

scenarios and is able of dealing with programs expressed in different pro-

gramming languages. The DSL for process management is implemented in

our portal.

Chapter 10

Conclusions

In this thesis we have presented an embedding of modern AG extensions

using a concise and elegant zipper-based implementation. The overview of

what has been achieved can be seen in Figure 10.1.

We started by embedding canonical AGs and continued by defining var-

ious extensions, including combining higher order and circularity. We have

shown how reference attributes, higher-order attributes and circular attributes

can be expressed as first class values in this setting. As a result, complex

multiple traversal algorithms can be expressed using an off-the-shelf set of

reusable components.

In the particular case of circular attributes, we have presented a gen-

eralized fixed point computation that provides the programmer with easy,

AG-based implementations of complex circular attribute definitions.

As we have shown both by the examples presented and by the ones avail-

able on line, our simple embedding provides the same expressiveness of mod-

ern, large and more complex attribute grammar based systems.

We have also seen that the solution we presented varies from traditional

approaches to implement multi-traversal algorithms in a functional setting.

Our AG-based solution does not require extra effort to implement intermedi-

ate data types or to control complex functions scheduling, when comparing

to strict programs, and does not require the lazy mechanisms of circular ones.

We have also shown how rewrite rules can be used to specify forward

169

170

Attributes

Attributes Attributes

Attributes Attributes

Attributes Attributes

Attributes

Attributes Attributes

Attributes Attributes

Attributes Attributes

Attributes

Attributes Attributes

Attributes Attributes

Attributes Attributes

Attributes

Attributes Attributes

Attributes Attributes

Attributes Attributes

Attributes

Attributes Attributes

Attributes

Attributes Attributes

Attributes Attributes

Attributes Attributes

Attributes

Attributes Attributes

AG

RAG HOAGCAG

CAG
&

HOAG

AttributesAttributes

Bidirectional

Figure 10.1: An overview of all the features we were able to embedded using
our zipper-based technique.

transformations, and be automatically inverted to specify backward trans-

formations, and then be implemented in our zipper-based embedding of at-

tribute grammars with enforced quality on the transformation.

The features our bidirectional system supports are completely automatic

for many applications, freeing the programmer of having to write complex

attribute equations that have to perform multiple pattern matching, manage

both the links back and their types or prioritizing transformations. The data

types resulting from the transformations on the bidirectional system can

themselves be the subjects of all the different attribute grammar techniques

we have presented.

171

10.1 Processing LET

In this section, we would like to go back to the example that was used

throughout the thesis to illustrate the involved concepts. All the semantics

we have described through AGs are visible in Figure 10.2.

Chapter 3

Name/Scope
Analysis

Chapter 4

Nested
sub-expressions

+
Name/Scope

Analysis

Chapter 5

AST
“Flattening”

Chapter 6

Meaning

Chapter 7

Meaning

Chapter 8

Parsing
LET

Concrete

Abstract

Figure 10.2: Overview of the examples presented on this thesis.

With the examples provided, we have automatic mechanisms available

to transform from the concrete to the abstract representation of LET, we

have extended the language with nested expressions, we have programs to

perform name and scope analysis and we presented two different strategies

to calculate the meaning of a LET program.

We never defined a way to parse LET. The biggest reason is that, since

parsing is such an important step on language analysis, there are multiple

techniques and tools to achieve it. For Haskell we have for example [Bienia

et al., 2008] or [Viera et al., 2008], and a search on the Haskell repository

Hackage1 returns dozens of packages related to parsing.

1https://hackage.haskell.org

https://hackage.haskell.org

172

We believe this is a proof of the potential of the approach we are pre-

senting. The simple and small examples we provided with the main aim of

showcasing the techniques we have developed is enough to create an inter-

preter for a small programming language, that despite its simplicity creates

interesting challenges.

10.2 Limitations of this Approach

Our approach has some limitations when comparing them to other AG sys-

tem, being them embedded or custom AG systems.

10.2.1 References in HOAGs

One limitation of our system is regarding the use of references. We have

shown in Chapter 4 that these are possible, and we even provided an example

of an AG using references, but we never used references in an HOAG. For

example, the symbol table from Chapter 6 could be a higher order tree with

references instead of actual values. The reason we never did this has to do

with the generic zipper library we use.

The zipper library in [Adams, 2010] allows wrapping of structures in

Haskell as long as they are instantiable by the classes Data and Typeable,

but the zipper themselves are not. In practice, what this means is that when

trying to write something like:

let zipper = toZipper 4 :: Zipper Integer -- OK

let wrap zipper = toZipper zipper -- ERROR

the second line will produce an error. While an Integer (in this case 4) is

instantiated by Data and Typeable, which means we can wrap it inside a

zipper with toZipper, creating something of type Zipper Integer , the same is

not true for zipper , which means toZipper zipper will fail.

This has limitations in our approach, as it means higher order attributes

cannot contain references (which if the reader recalls are themselves zippers).

173

10.2.2 Repetitive Attribute Evaluation

Another drawback of our approach is that when defining AGs, attributes are

calculated every time they are requested, which degrades the performance of

our system.

Most systems have mechanism to deal with repetitive attribute evalua-

tion. In JastAdd attributes are evaluated on demand, and if the user declares

them as ”lazy”, their values are cached. In Kiama attributes are evaluated

when they are demanded for a specific node. The most common kind of

attributes are cached so their value will not be recalculated, but there is the

option of having uncached attributes. Silver has similar technology built in.

Creating a specific AG system has the advantage of customizing attribute

evaluators and define their precise behavior.

In our embedding memoization is not easy to achieve, since we are ex-

pressing attribute grammars in a lazy setting. The combination of laziness

and memoization is still an open problem, and modern compilers such as GHC

still lacks support for it.

This embedding inherits the disadvantage of being recalculated as often

as they are needed, but inherits the advantage of being calculated lazily

without any additional encoding, as this is the functional nature of Haskell.

In practice this means that if an attribute is defined but is not needed by the

grammar, it is never calculated.

Other embeddings in Haskell ([de Moor et al., 2000a] and [Viera and

Swierstra, 2012]) do not have recalculation of attributes as a problem, because

their AGs are ultimately expressed as circular lazy programs [Bird, 1984].

However, this means they can not have some extensions, such as circular

AGs.

As we have stated in the introduction to this work, embedding a language

in a host language makes it inherit its advantages and disadvantages, and

this is a perfect example of this happening.

174

10.2.3 Language Extensions

In our setting we use data types in Haskell to define grammars (and subse-

quently, languages), on which we define attribute computations as functions.

The attribute computations point to children through their numeric position

in the tree node. For example, for the data type:

data Let = Let Dcls Expr

we define an attribute that pretty prints the AST as:

p print ag = case (constructor ag) as

"Let" = (p print ag .$ 1) ++ (result ag .$ 2)

where we define the p print attribute as being the result of its computation

on the first child plus the result of the second child. However, if we want to

insert type information, as in:

data Let = Let Type Dcls Expr

the previously defined attribute is automatically invalid, because now we

are asking for p print on a Type (first child) and result on a Dcls (second

child). Generalizing, this means that insertion of symbols in a grammar,

ans subsequent adaptation of the corresponding data type may make all the

attributes specified for that production invalid.

10.3 Future Work

We believe the embedding for AGs we have presented closely resembles an

attribute grammar and as the expressive power of embedding AG systems.

However there are still a few points we would like to address.

First, we would like to improve attribute definition by referencing non-

terminals instead of (numeric) positions on the right-hand side of produc-

tions. This would make attributes easier to write, and extending productions

would be simplified as long as the names of the left-hand side symbols are

maintained the same.

175

Currently, in our setting, attributes are recalculated every time they are

necessary during the computations of an AG. Memoization would be a great

solution for this problem. The Haskell compiler GHC does not support it,

but Haskell packages such as Memotrie2 gives us hope of being capable of

achieving this.

Regarding the bidirectional system we have presented, there are few areas

we would want to address. The first would be the generalization of this work

to other attribute grammar systems besides Silver and our embedding. We

would like to generate AG specifications for other systems such as Kiama,

LRC or JastAdd so as to provide these techniques to a wider audience in the

attribute grammar community. The bidirectional approach should also be

evaluated on a number of mainstream syntactically rich languages.

We would also like to, wherever possible, benchmark our embedding

against other AG embeddings and systems. This test is hard to do, as it

is difficult to directly compare systems as wide as the ones we have shown.

For example, we have specific AG systems such as Silver, Kiama, LRC or UUAG

[Swierstra et al., 2004], embeddings in object-oriented environments such as

Kiama or embeddings in functional environments, such as [de Moor et al.,

2000a] or the embedding we are presenting in this work. To make it harder,

not all these systems support the same extensions on AGs.

2http://hackage.haskell.org/package/MemoTrie

http://hackage.haskell.org/package/MemoTrie

176

Bibliography

Adams, M. D. (2010). Scrap Your Zippers: A Generic Zipper for Hetero-

geneous Types. In Proceedings of the 6th ACM SIGPLAN Workshop on

Generic Programming, WGP ’10, pages 13–24, New York, USA. Associa-

tion for Computing Machinery (ACM).

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers:

Principles, Techniques, and Tools (2nd Edition). Addison-Wesley.

Alblas, H. (1991). Introduction to attribute grammars. In Alblas, H. and

Melichar, B., editors, Attribute Grammars, Applications and Systems, vol-

ume 545 of Lecture Notes in Computer Science, pages 1–15. Springer-

Verlag.

Badouel, E., Fotsing, B., and Tchougong, R. (2007). Yet another implemen-

tation of attribute evaluation. Research Report RR-6315, INRIA.

Badouel, E., Fotsing, B., and Tchougong, R. (2011). Attribute Grammars

As Recursion Schemes over Cyclic Representations of Zippers. Electronic

Notes in Theoretical Computer Science, 229(5):39–56.

Badouel, E., Tchougong, R., Nkuimi-Jugnia, C., and Fotsing, B. (2013).

Attribute Grammars As Tree Transducers over Cyclic Representations of

Infinite Trees and Their Descriptional Composition. Theory on Computer

Science, 480:1–25.

Bienia, C., Kumar, S., Singh, J. P., and Li, K. (2008). The PARSEC Bench-

mark Suite: Characterization and Architectural Implications. In Proceed-

ings of the 17th International Conference on Parallel Architectures and

177

178

Compilation Techniques, PACT ’08, pages 72–81, New York, USA. Asso-

ciation for Computing Machinery (ACM).

Bird, R. (1998). Introduction to Functional Programming using Haskell (2nd

Edition). Prentice-Hall.

Bird, R. S. (1984). Using circular programs to eliminate multiple traversals

of data. Acta Informatica, 21(3):239–250.

Bohannon, A., Pierce, B. C., and Vaughan, J. A. (2006). Relational Lenses:

A Language for Updatable Views. In Proceedings of the Twenty-fifth ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-

tems, PODS ’06, pages 338–347, New York, USA. Association for Com-

puting Machinery (ACM).

Boyland, J. T. (2005). Remote Attribute Grammars. Magazine Communi-

cations of the ACM, 52(4):627–687.

Bransen, J., Dijkstra, A., and Swierstra, S. D. (2014). Lazy Stateless Incre-

mental Evaluation Machinery for Attribute Grammars. In Proceedings of

the ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program

Manipulation, PEPM ’14, pages 145–156, New York, USA. Association for

Computing Machinery (ACM).

Brown, D., Levine, J., and Mason, T. (1992). lex & yacc (2nd Edition).

O’Reilly Media.

Campos, M. D. and Barbosa, L. S. (2009). Implementation of an Orchestra-

tion Language as a Haskell Domain Specific Language. Electronic Notes

Theoretic Compututer Science, 255:45–64.

Carle, A. and Pollock, L. (1996). On the Optimality of Change Propagation

for Incremental Evaluation of Hierarchical Attribute Grammars. ACM

Transactions on Programming Languages and Systems, 18(1):16–29.

Chirica, L. M. and Martin, D. F. (1979). An order-algebraic definition of

knuthian semantics. Mathematical systems theory, 13(1):1–27.

179

Core, A. (May 2014). http://www.sqo-oss.org.

Czarnecki, K., Foster, J. N., Hu, Z., Lämmel, R., Schürr, A., and Terwilliger,

J. F. (2009). Bidirectional Transformations: A Cross-Discipline Perspec-

tive. In Proceedings of the 2nd International Conference on Theory and

Practice of Model Transformations, ICMT ’09, pages 260–283. Springer-

Verlag.

Czarnecki, K. and Helsen, S. (2006). Feature-based Survey of Model Trans-

formation Approaches. IBM Systems Journal - Model-driven software de-

velopment, 45(3):621–645.

de Moor, O., Backhouse, K., and Swierstra, S. D. (2000a). First-class At-

tribute Grammars. Informatica (Slovenia), 24(3).

de Moor, O., Peyton-Jones, S., and Van Wyk, E. (2000b). Aspect-Oriented

Compilers. In Czarnecki, K. and Eisenecker, U. W., editors, Generative

and Component-Based Software Engineering, volume 1799 of Lecture Notes

in Computer Science, pages 121–133. Springer-Verlag.

Dijkstra, A., Fokker, J., and Swierstra, S. D. (2009). The Architecture of the

Utrecht Haskell Compiler. In Proceedings of the 2nd ACM SIGPLAN Sym-

posium on Haskell, Haskell ’09, pages 93–104, New York, USA. Association

for Computing Machinery (ACM).

Doets, K. and van Eijck, J. (2004). The Haskell Road to Logic, Maths and

Programming (2nd Edition). College Publications.

Ekman, T. and Hedin, G. (2006). Modular Name Analysis for Java Using Jas-

tadd. In Proceedings of the 2005 International Conference on Generative

and Transformational Techniques in Software Engineering, GTTSE’05,

pages 422–436, Berlin, Heidelberg. Springer-Verlag.

Ekman, T. and Hedin, G. (2007). The Jastadd Extensible Java Compiler.

In Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-

oriented Programming Systems and Applications, OOPSLA ’07, pages 1–

18, New York, USA. Association for Computing Machinery (ACM).

http://www.sqo-oss.org

180

Farrow, R. (1986). Automatic Generation of Fixed-point-finding Evalua-

tors for Circular, but Well-defined, Attribute Grammars. In Proceedings

of the 1986 SIGPLAN Symposium on Compiler Construction, SIGPLAN

’86, pages 85–98, New York, USA. Association for Computing Machinery

(ACM).

Fernandes, J. P. (2004). Generalized LR Parsing in Haskell. Research report,

Universidade do Minho.

Fernandes, J. P. and Saraiva, J. (2007). Tools and Libraries to Model and

Manipulate Circular Programs. In Proceedings of the 2007 ACM SIGPLAN

Symposium on Partial Evaluation and Semantics-based Program Manipu-

lation, PEPM ’07, pages 102–111. Association for Computing Machinery

(ACM).

Fernandes, J. P., Saraiva, J., Seidel, D., and Voigtländer, J. (2011). Stricti-

fication of Circular Programs. In Proceedings of the 20th ACM SIGPLAN

Workshop on Partial Evaluation and Program Manipulation, PEPM ’11,

pages 131–140, New York, USA. Association for Computing Machinery

(ACM).

Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C., and Schmitt, A.

(2007). Combinators for Bidirectional Tree Transformations: A Linguistic

Approach to the View-update Problem. ACM Transactions on Program-

ming Languages and Systems, 29(3).

Gill, A. (2014). Domain-specific Languages and Code Synthesis Using

Haskell. Magazine Communications of the ACM, 57(6):42–49.

Gray, R. W., Levi, S. P., Heuring, V. P., Sloane, A. M., and Waite, W. M.

(1992). Eli: A Complete, Flexible Compiler Construction System. Maga-

zine Communications of the ACM, 35(2):121–130.

Hedin, G. (1999). Reference Attributed Grammars. In Proceedings of the

2nd Workshop on Attribute Grammars and their Applications, WAGA ’99,

pages 153–172. INRIA Rocquencourt.

181

Hedin, G. (2011). An Introductory Tutorial on JastAdd Attribute Gram-

mars. In Proceedings of the 3rd International Summer School Conference

on Generative and Transformational Techniques in Software Engineering

III, GTTSE’09, pages 166–200, Berlin, Heidelberg. Springer-Verlag.

Hibberd, M., Lawley, M., and Raymond, K. (2007). Forensic Debugging of

Model Transformations. In Proceedings of the 10th International Confer-

ence on Model Driven Engineering Languages and Systems, MODELS’07,

pages 589–604. Springer-Verlag.

Hoover, R. and Teitelbaum, T. (1986). Efficient Incremental Evaluation

of Aggregate Values in Attribute Grammars. In Proceedings of the 1986

SIGPLAN Symposium on Compiler Construction, SIGPLAN ’86, pages

39–50, New York, USA. Association for Computing Machinery (ACM).

Hu, Z., Mu, S.-C., and Takeichi, M. (2004). A Programmable Editor for De-

veloping Structured Documents Based on Bidirectional Transformations.

In Proceedings of the 2004 ACM SIGPLAN Symposium on Partial Evalu-

ation and Semantics-based Program Manipulation, PEPM ’04, pages 178–

189, New York, USA. Association for Computing Machinery (ACM).

Hudak, P. (1996). Building Domain-specific Embedded Languages. ACM

Computer Surveys, 28(4es).

Hudak, P. (2000). The Haskell School of Expression - Learning Functional

Programming through Multimedia. Cambridge University Press.

Huet, G. (1997). The Zipper. Journal of Functional Programming, 7(5):549–

554.

Johnsson, T. (1987). Attribute grammars as a functional programming

paradigm. In Kahn, G., editor, Functional Programming Languages and

Computer Architecture, volume 274 of Lecture Notes in Computer Science,

pages 154–173. Springer-Verlag.

182

Jones, L. G. (1990). Efficient Evaluation of Circular Attribute Grammars.

ACM Transactions on Programming Languages and Systems, 12(3):429–

462.

Jones, S. P., Gordon, A., and Finne, S. (1996). Concurrent Haskell. In Pro-

ceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL ’96, pages 295–308, New York, USA.

Association for Computing Machinery (ACM).

Jones, S. P., Hughes, J., et al. (1999). Report on the Programming Language

Haskell 98. http://www.haskell.org/definition/haskell98-report.

pdf.

Jouault, F. and Kurtev, I. (2006). Transforming Models with ATL. In

Proceedings of the 2005 International Conference on Satellite Events at

the MoDELS, MoDELS’05, pages 128–138. Springer-Verlag.

Jourdan, M., Parigot, D., Julié, C., Durin, O., and Bellec, C. L. (1990).

Design, Implementation and Evaluation of the FNC-2 Attribute Grammar

System. In Proceedings of the ACM SIGPLAN 1990 Conference on Pro-

gramming Language Design and Implementation, PLDI ’90, pages 209–222,

New York, USA. ACM.

Kaiser, G. E. and Kaplan, S. M. (1993). Parallel and Distributed Incremental

Attribute Evaluation Algorithms for Multiuser Software Development En-

vironments. ACM Transactions on Software Engineering and Methodology,

2(1):47–92.

Kaminski, T. and Van Wyk, E. (2012). Integrating Attribute Grammar

and Functional Programming Language Features. In Proceedings of the

4th International Conference on Software Language Engineering, SLE ’11,

pages 263–282, Berlin, Heidelberg. Springer-Verlag.

Kastens, U. (1980). Ordered attributed grammars. Acta Informatica,

13(3):229–256.

http://www.haskell.org/definition/haskell98-report.pdf
http://www.haskell.org/definition/haskell98-report.pdf

183

Kastens, U. and Schmidt, C. (2002). VL-Eli:: A Generator for Visual Lan-

guages. Electronic Notes in Theoretical Computer Science, 65(3):139 –

143. Second Workshop on Language Descriptions, Tools and Applications

(Satellite Event of {ETAPS} 2002).

Kitchin, D., Quark, A., Cook, W., and Misra, J. (2009). The Orc Pro-

gramming Language. In Proceedings of the Joint 11th IFIP WG 6.1

International Conference FMOODS ’09 and 29th IFIP WG 6.1 Interna-

tional Conference FORTE ’09 on Formal Techniques for Distributed Sys-

tems, FMOODS ’09/FORTE ’09, pages 1–25, Berlin, Heidelberg. Springer-

Verlag.

Knuth, D. E. (1968). Semantics of Context-free Languages. Mathematical

Systems Theory, 2(2):127–145. Corrections in 5(1971) pp. 95-96.

Kuiper, M. and Swierstra, S. D. (1987). Using Attribute Grammars to Derive

Efficient Functional Programs. In Computing Science in the Netherlands.

Kuiper, M. F. and Saraiva, J. (1998). Lrc - A Generator for Incremental

Language-Oriented Tools. In Proceedings of the 7th International Con-

ference on Compiler Construction, CC ’98, pages 298–301, London, UK.

Springer-Verlag.

Lämmel, R. and Jones, S. P. (2003). Scrap Your Boilerplate: A Practi-

cal Design Pattern for Generic Programming. In Proceedings of the 2003

ACM SIGPLAN International Workshop on Types in Languages Design

and Implementation, TLDI ’03, pages 26–37, New York, USA. Association

for Computing Machinery (ACM).

Lipovaca, M. (2011). Learn You a Haskell for Great Good!: A Beginner’s

Guide. No Starch Press.

Luković, I., ao Varanda Pereira, M. J., Oliveira, N., da Cruz, D., and Hen-

riques, P. R. (2011). A DSL for PIM Specifications: Design and Attribute

Grammar based Implementation. Computer Science and Information Sys-

tems, 8(2):379–403.

184

Magnusson, E. and Hedin, G. (2000). Program Visualization Using Reference

Attributed Grammars. Nordic Journal of Computing, 7(2):67–86.

Martins, P., Carvalho, N., Fernandes, J. P., Almeida, J. J., and Saraiva,

J. (2013). A Framework for Modular and Customizable Software Analy-

sis. In Proceedings of the 13th International Conference on Computational

Science and Its Applications, volume 7972 of ICCSA ’13, pages 443–458.

Springer-Verlag.

Martins, P., Fernandes, J. P., and Saraiva, J. (2012). A Purely Functional

Combinator Language for Software Quality Assessment. In Proceedings of

the Symposium on Languages, Applications and Technologies, volume 21

of SLATE ’12, pages 51–69. Schloss Dagstuhl - Leibniz-Zentrum fuer In-

formatik.

Martins, P., Fernandes, J. P., and Saraiva, J. (2014a). A Web Portal for the

Certification of Open Source Software. In Proceedings of the 6th Interna-

tional Workshop on Foundations and Techniques for Open Source Software

Certification, volume 7991 of OPENCERT ’12, pages 244–260. Springer-

Verlag.

Martins, P., Saraiva, J., Fernandes, J. P., and Van Wyk, E. (2014b). Generat-

ing Attribute Grammar-based Bidirectional Transformations from Rewrite

Rules. In Proceedings of the ACM SIGPLAN 2014 Workshop on Partial

Evaluation and Program Manipulation, PEPM ’14, pages 63–70. Associa-

tion for Computing Machinery (ACM).

Matsuda, K., Hu, Z., Nakano, K., Hamana, M., and Takeichi, M. (2007).

Bidirectionalization Transformation Based on Automatic Derivation of

View Complement Functions. In Proceedings of the 12th ACM SIGPLAN

International Conference on Functional Programming, ICFP ’07, pages

47–58, New York, USA. Association for Computing Machinery (ACM).

Mena, A. S. (2014). Beginning Haskell: A Project-Based Approach. Apress.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When and How to Develop

Domain-specific Languages. ACM Computing Surveys, 37(4).

185

Mernik, M., Lenic, M., Avdicausevic, E., and Zumer, V. (2000). Multiple

Attribute Grammar Inheritance. Informatica (Slovenia), 24(3).

Middelkoop, A., Dijkstra, A., and Swierstra, S. D. (2010). Iterative Type

Inference with Attribute Grammars. In Proceedings of the Ninth Interna-

tional Conference on Generative Programming and Component Engineer-

ing, GPCE ’10, pages 43–52, New York, USA. Association for Computing

Machinery (ACM).

Middelkoop, A., Dijkstra, A., and Swierstra, S. D. (2011). Stepwise Evalua-

tion of Attribute Grammars. In Proceedings of the Eleventh Workshop on

Language Descriptions, Tools and Applications, LDTA ’11, pages 5:1–5:8,

New York, USA. Association for Computing Machinery (ACM).

Milner, R., Tofte, M., and Macqueen, D. (1997). The Definition of Standard

ML - Revised. The MIT Press.

Odersky, M., Spoon, L., and Venners, B. (2008). Programming in Scala: A

Comprehensive Step-by-step Guide. Artima Incorporation, USA.

O’Sullivan, B., Goerzen, J., and Stewart, D. (2008). Real World Haskell.

O’Reilly Media.

Paakki, J. (1995). Attribute Grammar Paradigms&Mdash;a High-level

Methodology in Language Implementation. ACM Compututer Surveys,

27(2):196–255.

Parr, T. (2013). The Definitive ANTLR 4 Reference (2nd Edition). Prag-

matic Bookshelf.

Pennings, M., Swierstra, S. D., and Vogt, H. (1992). Using Cached Functions

and Constructors for Incremental Attribute Evaluation. In Proceedings of

the 4th International Symposium on Programming Language Implemen-

tation and Logic Programming, PLILP ’92, pages 130–144, London, UK.

Springer-Verlag.

Pennings, M. C. (1994). Generating incremental attribute evaluators. PhD

thesis, Computer Science, Utrecht University.

186

QSOS (May 2014). http://www.qsos.org.

Reps, T. and Demers, A. (1987). Sublinear-space Evaluation Algorithms for

Attribute Grammars. ACM Transactions on Programming Languages and

Systems, 9(3):408–440.

Reps, T. W. and Teitelbaum, T. (1989). The Synthesizer Generator: A

System for Constructing Language-Based Editors. Springer-Verlag.

Rodeh, M. and Sagiv, M. (1999). Finding Circular Attributes in Attribute

Grammars. Journal of the ACM, 46(4):556–ff.

Saraiva, J. (1999). Purely Functional Implementation of Attribute Grammars.

PhD thesis, Department of Computer Science, Utrecht University.

Saraiva, J. (2002). Component-Based Programming for Higher-Order At-

tribute Grammars. In Batory, D., Consel, C., and Taha, W., editors, Gen-

erative Programming and Component Engineering, volume 2487 of Lecture

Notes in Computer Science, pages 268–282. Springer-Verlag.

Saraiva, J., Kuiper, M., and Swierstra, S. D. (1997). Specializing Trees

for Efficient Functional Decoration. In Leuschel, M., editor, Workshop

on Specialization of Declarative Programs and its Applications, ILPS ’97,

pages 63–72. (Also available as Technical Report CW 255, Department of

Computer Science, Katholieke Universiteit Leuven, Belgium).

Saraiva, J. and Swierstra, S. D. (1999a). Data structure free compilation.

In Proceedings of the 8th International Conference on Compiler Construc-

tion, Held As Part of the European Joint Conferences on the Theory and

Practice of Software, ETAPS’99, CC ’99, pages 1–16. Springer-Verlag.

Saraiva, J. and Swierstra, S. D. (1999b). Data Structure Free Compilation.

In Jãhnichen, S., editor, Compiler Construction, volume 1575 of Lecture

Notes in Computer Science, pages 1–16. Springer-Verlag.

Saraiva, J. and Swierstra, S. D. (1999c). Generic Attribute Grammars. In

Parigot, D. and Mernik, M., editors, Proceedings of the 2nd Workshop on

http://www.qsos.org

187

Attribute Grammars and their Applications, WAGA ’99, pages 185–204.

INRIA Rocquencourt.

Saraiva, J. and Swierstra, S. D. (2003). Generating Spreadsheet-like Tools

from Strong Attribute Grammars. In Proceedings of the 2nd Interna-

tional Conference on Generative Programming and Component Engineer-

ing, GPCE ’03, pages 307–323, New York, USA. Springer-Verlag.

Sasaki, A. and Sassa, M. (2004). Circular attribute grammars with remote

attribute references and their evaluators. New Generation Computing,

22(1):37–60.

Schäfer, M., Ekman, T., and Moor, O. (2009). Formalising and Verifying

Reference Attribute Grammars in Coq. In Proceedings of the 18th European

Symposium on Programming Languages and Systems: Held As Part of the

Joint European Conferences on Theory and Practice of Software, ETAPS

2009, ESOP ’09, pages 143–159, Berlin, Heidelberg. Springer-Verlag.

Sloane, A. M., Kats, L. C. L., and Visser, E. (2010). A Pure Object-Oriented

Embedding of Attribute Grammars. Electronic Notes in Theoretical Com-

puter Science, 253(7):205–219.

Söderberg, E. (2012). Contributions to the Construction of Extensible Se-

mantic Editors. PhD thesis, Lund University.

Söderberg, E. and Hedin, G. (2013). Circular Higher-Order Reference At-

tribute Grammars. In Erwig, M., Paige, R. F., and Van Wyk, E., editors,

Software Language Engineering, volume 8225 of Lecture Notes in Computer

Science, pages 302–321. Springer-Verlag.

Squale (May 2014). http://www.squale.org.

Stallman, R. M. and Community, G. D. (2009). Using The Gnu Compiler

Collection: A Gnu Manual For Gcc Version 4.3.3. CreateSpace Indepen-

dent Publishing Platform.

http://www.squale.org

188

Stevens, P. (2008). A Landscape of Bidirectional Model Transformations. In

Lämmel, R., Visser, J., and Saraiva, J., editors, Generative and Transfor-

mational Techniques in Software Engineering II, pages 408–424. Springer-

Verlag, Berlin, Heidelberg.

Swierstra, S. D., Alcocer, P. R. A., and Saraiva, J. (1999). Designing and Im-

plementing Combinator Languages. In Swierstra, S. D., Oliveira, J. N., and

Henriques, P. R., editors, Advanced Functional Programming, volume 1608

of Lecture Notes in Computer Science, pages 150–206. Springer-Verlag.

Swierstra, S. D., Baars, A., and Löh, A. (2004). The UU-

AG Attribute Grammar System. http://www.cs.uu.nl/wiki/HUT/

AttributeGrammarSystem.

Teitelbaum, T. and Chapman, R. (1990). Higher-order Attribute Grammars

and Editing Environments. In Proceedings of the ACM SIGPLAN 1990

Conference on Programming Language Design and Implementation, PLDI

’90, pages 197–208, New York, USA. Association for Computing Machinery

(ACM).

Terry, P. D. (2005). Compiling with C# and Java. Addison-Wesley.

Uustalu, T. and Vene, V. (2005). Comonadic functional attribute evaluation.

In Trends in Functional Programming, pages 145–162. Intellect Books.

van den Brand, M. G. J., Scheerder, J., Vinju, J. J., and Visser, E. (2002).

Disambiguation Filters for Scannerless Generalized LR Parsers. In Pro-

ceedings of the 11th International Conference on Compiler Construction,

CC ’02, pages 143–158, London, UK. Springer-Verlag.

Van Wyk, E., Bodin, D., Gao, J., and Krishnan, L. (2008). Silver: An

Extensible Attribute Grammar System. Electronic Notes in Theoretical

Computer Science, 203(2):103–116.

Van Wyk, E., de Moor, O., Backhouse, K., and Kwiatkowski, P. (2002). For-

warding in Attribute Grammars for Modular Language Design. In Pro-

http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem

189

ceedings of the 11th International Conference on Compiler Construction,

CC ’02, pages 128–142, London, UK. Springer-Verlag.

Viera, M. (2013). First Class Syntax, Semantics, and Their Composition.

PhD thesis, Utrecht University.

Viera, M. and Swierstra, S. D. (2012). Attribute Grammar Macros. In

Proceedings of the 16th Brazilian Conference on Programming Languages,

SBLP’12, pages 150–164, Berlin, Heidelberg. Springer-Verlag.

Viera, M., Swierstra, S. D., and Lempsink, E. (2008). Haskell, Do You Read

Me?: Constructing and Composing Efficient Top-down Parsers at Run-

time. In Proceedings of the First ACM SIGPLAN Symposium on Haskell,

Haskell ’08, pages 63–74, New York, USA. Association for Computing Ma-

chinery (ACM).

Viera, M., Swierstra, S. D., and Swierstra, W. (2009). Attribute Gram-

mars Fly First-class: How to Do Aspect Oriented Programming in Haskell.

In Proceedings of the 14th ACM SIGPLAN International Conference on

Functional Programming, ICFP ’09, pages 245–256, New York, USA. As-

sociation for Computing Machinery (ACM).

Vogt, H. H., Swierstra, S. D., and Kuiper, M. F. (1989). Higher Order

Attribute Grammars. In Proceedings of the ACM SIGPLAN 1989 Con-

ference on Programming Language Design and Implementation, PLDI ’89,

pages 131–145, New York, NY, USA. Association for Computing Machin-

ery (ACM).

Yakushev, A. R., Holdermans, S., Löh, A., and Jeuring, J. (2009). Generic

Programming with Fixed Points for Mutually Recursive Datatypes. In Pro-

ceedings of the 14th ACM SIGPLAN International Conference on Func-

tional Programming, ICFP ’09, pages 233–244, New York, USA. Associa-

tion for Computing Machinery (ACM).

Yellin, D. M. (1988). Attribute Grammar Inversion and Source-to-source

Translation. Springer-Verlag.

Index

Σ-algebra, 129

ground term, 129

ground word, 129

ground word algebra, 129

ε-production, 31, 92

abstract context-free grammar, 32, 34

abstract grammar, 34

abstract grammar, 34

abstract syntax tree, 34

accessible, 32

accumulating parameter, 47

accumulator, 47

algebras, 129

ambiguity, 36

ambiguous, 32

ANTLR, 3

attributable attribute, 105, 109

attribute, 39

attribute equation, 41

attribute evaluation, 43

attribute evaluator, 43

attribute grammar, 39–44, 50, 52, 70,

89, 148

attribute, 39

attribute equation, 41

attribute evaluation, 43

attribute evaluator, 43

attribute occurrence, 40, 41

attribute tree, 43

attributed tree, 43

attribution rule, 40, 43

circular attribute grammar, 89

complete attribute grammar, 42

copy rule, 42

decorated tree, 43, 52

dependency graph, 42

equivalent attribute grammar, 43

inherited attribute, 40

meaning, 43, 50

non-circular attribute grammar, 44

semantic function, 41

synthesized attribute, 40

tree decoration, 43

undecorated tree, 43

well-defined attribute grammar, 44

attribute instance, 44

attribute occurrence, 40, 41

attribute tree, 43, 89

attributed tree, 43

attribution rule, 40, 43

Backus Naur Formalism, 35

backward transformation, 125, 142,

190

191

148–150

bidirectional system, 22

bidirectional transformation, 22, 148

bidirectional system, 22

bijective relation, 149

bottom-up parser, 33

C, 2, 70

canBe, 141

case-expression, 145

certification, 156

circular attribute, 89, 91, 94

circular attribute computation, 90, 93

circular attribute grammar, 89

circular computation, 94, 96

circular definition, 89, 90

circular dependency, 89

combinator, 157, 160

combinator language, 158

combinator library, 156

complete attribute grammar, 42

complete context-free grammar, 32–

34, 42

compound rewrite rule, 142

compound rule, 142, 143

concrete context-free grammar, 32, 33

concrete grammar, 32

concrete grammar, 32, 33

concrete syntax tree, 33, 37

derivation tree, 33

parse tree, 33

concrete tree, 37, 38

constant terminal symbol, 134

context, 59, 61

context-free grammar, 30, 32, 34–36,

39, 40, 42

accessible, 32

ambiguity, 36

ambiguous, 32

Backus Naur Formalism, 35

complete context-free grammar, 42

derivable, 32

literal symbol, 34

non-terminal symbol, 34

production, 40

pseudo-terminal, 36

pseudo-terminal symbol, 34

sequence, 32

terminal symbol, 34

unambiguous, 32

context-free language, 31

copy rule, 42

cyclic, 89

cyclic dependency, 89

data constructor, 59

decorated tree, 43, 52–54

dependency graph, 42, 43

derivable, 32

derivation tree, 33

directly derives, 31

Eli, 6, 70

embedding, 65, 69, 70

equivalent attribute grammar, 43

fixed point, 89, 93, 94

192

forward transformation, 22, 143, 145,

148

functional zipper, 59

zipper, 59

get, 136, 137, 139, 140, 144, 145, 147,

148

GHC, 173

grammar, 36

ground term, 129

ground word, 129

ground word algebra, 129

Haskell, 5–9, 13–15, 18, 23, 24, 26, 30,

35, 46, 47, 53, 55, 57, 59, 63–

65, 67, 68, 70, 72, 73, 75, 77,

92, 102, 106, 107, 124, 126,

148, 153–158, 162, 163, 166–

168, 171–175

host language, 70

HTML, 2, 167

inherited attribute, 40, 67

inversion, 149

JastAdd, 6, 70, 75–80, 173, 175

Java, 2, 6, 70, 77, 79, 80, 157

JAVASCRIPT, 167

Kiama, 87, 88, 91–94, 100, 173, 175

Kleene star, 30

left-hand side, 31, 40

lhs, 31

LET, 9–13, 15, 18, 24, 29, 35–38, 45,

47–50, 52–54, 58, 63–65, 67,

73, 77, 78, 81, 83, 87–96, 99,

102, 104, 106, 113–116, 120,

122–124, 131, 148, 149, 171

lhs, 31

link back, 139

literal symbol, 34, 36, 38, 131

LL parser, 33

LL(1), 33

local attribute, 96

LR parser, 33

LR(1), 33

LRC, 6, 68, 70, 101–105, 109, 175

MATLAB, 2

meaning, 43, 50

ML, 9

monotonic computation, 89

MySQL, 2

non-circular attribute grammar, 44

non-linear rewrite rule, 144

non-linear rule, 142, 144

non-terminal, 30, 31, 36, 41, 131, 141

non-terminal symbol, 30, 34

non-terminal, 30

nullary terminal operator, 132

occurrence, 31

parse tree, 33

parser, 32, 33, 36–38

ambiguity, 36

bottom-up parser, 33

LL parser, 33

LL(1), 33

193

LR parser, 33

LR(1), 33

parsing, 36

recursive-descent, 33

semantic analysis, 37

syntactic analysis, 37

top-down parser, 33

parsing, 36

partial transformation, 145

Pascal, 77

Perl, 157, 163, 166

PHP, 167

production, 30, 31, 33, 35, 39, 40

ε-production, 31

left-hand side, 31, 40

occurrence, 31

right-hand side, 31, 40

terminal production, 31

pseudo-terminal, 35, 36

pseudo-terminal symbol, 34

put, 133, 134, 137, 139, 145, 146

recursive-descent, 33

rewrite rule, 30, 125, 129, 130, 136,

138, 141, 143

rhs, 31

right-hand side, 31, 33, 40, 41, 143

rhs, 31

rule specificity, 130, 141

Scala, 9, 92

semantic analysis, 37

semantic function, 41

sequence, 32

Silver, 6, 7, 68, 70, 127, 129, 140, 150–

153, 173, 175

STDERR, 164, 165

STDIN, 165, 167

STDOUT, 164, 167

syntactic analysis, 37

syntactic reference, 41

synthesized attribute, 40

term algebra, 130

terminal, 30, 31

terminal production, 31

terminal symbol, 30, 34, 36, 131

terminal, 30

top-down parser, 33

total transformation, 135, 145

transformation specification, 125

tree decoration, 43

tree repair, 147

unambiguous, 32

unary terminal operator, 132

undecorated tree, 43

UU-AG, 6

Verilog, 2

well-defined attribute grammar, 44

word algebra, 130

XML, 2

yacc, 3

zipper, 58, 59, 156

	Introduction
	Languages Design and Implementation
	Attribute Grammars
	Embedding Attribute Grammars
	Multiple Traversal Algorithms
	Strict Algorithms
	Lazy Algorithms

	Bidirectional Attribute Grammars
	Overview
	Main Publications
	Software Prototypes
	Other Publications

	Structure of the Thesis

	Definitions and Notations
	Introduction
	Context-free Grammars
	Concrete and Abstract Grammars

	Context-free Grammar Specification
	Attribute Grammars
	Attributed and Decorated Trees
	Circularities in Attribute Grammars

	Attribute Grammar Specification
	Capturing Variable Declarations
	Distributing Variable Declarations
	Calculating Invalid Identifiers
	Decorated Tree

	Conclusions

	Embedding Attribute Grammars
	Introduction
	Functional Zippers
	Generic Zippers

	LET as an Embedded Attribute Grammar
	Functional Embeddings of Attribute Grammars
	Zipper-based approaches
	Non-zipper-based approaches

	Conclusion

	Reference Attribute Grammars
	Introduction
	Reference Attribute Grammars
	Reference Attribute Grammars in JastAdd

	Embedding Reference Attribute Grammars
	Conclusions

	Circular Attribute Grammars
	Introduction
	Circular Attribute Grammars
	Circular Attribute Grammars in Kiama

	Embedding Circular Attribute Grammars
	Conclusions

	Higher Order Attribute Grammars
	Introduction
	Higher Order Attribute Grammars
	Higher Order Attribute Grammars in LRC

	Embedding Higher Order Attribute Grammars
	Semantic Functions and Higher Order Attributes

	Conclusions

	Circular and Higher Order Attribute Grammars
	Introduction
	A Symbol Table as an Higher Order Attribute
	Circularity in Higher Order Attributes
	Conclusions

	Bidirectional Attribute Grammars
	Introduction
	-Algebra

	Simple Transformations
	Specifying the Forward Transformation
	Restrictions on the Forward Transformation
	Generating Attribute Grammar Equations

	Generating the Backward Transformation
	Inverting the Sort Map and Rewrite Rules
	Extending the Rules
	Generating Attribute Grammar Equations

	Links Back: making use of the Original Source Term
	Allowing Overlapping Rewrite Rules

	Supporting Non-linear, Compound Rules and Partial Transformations
	Non-linear, Compound Rule Specification
	Inverting the Rewrite Rules
	Generating Attribute Grammar Equations

	Tree Repairs
	Embedding Bidirectional Attribute Grammars
	Conclusions

	Tools
	Introduction
	Embedding DSLs for Language Analysis
	Defining Combinators
	Type Checking
	Script Generation
	Overview

	Portal
	Conclusions

	Conclusions
	Processing LET
	Limitations of this Approach
	References in HOAGs
	Repetitive Attribute Evaluation
	Language Extensions

	Future Work

	Index

