
A Web Portal for the Certification of Open
Source Software

Pedro Martins, João P. Fernandes, and João Saraiva

HASLab / INESC TEC, Universidade do Minho, Portugal
{prmartins, jpaulo, jas}@di.uminho.pt

Abstract. This paper presents a web portal for the certification of open
source software. The portal aims at helping programmers in the internet
age, when there are (too) many open source reusable libraries and tools
available. Our portal offers programmers a web-based and easy setting
to analyze and certify open source software, which is a crucial step to
help programmers choosing among many available alternatives, and to
get some guarantees before using one piece of software.
The paper presents our first prototype of such web portal. It also de-
scribes in detail a domain specific language that allows programmers to
describe with a high degree of abstraction specific open source software
certifications. The design and implementation of this language is the core
of the web portal.

Keywords: Software Analysis, Software Certification, Open Source Soft-
ware, Programming Languages

1 Introduction

The advent of the internet is changing our lives. Not only is it changing the way
we live, but also the way we develop our software. In the last century, developing
software was mainly performed using programming languages and their libraries,
which provided the necessary support to build software applications. Nowadays,
the way we develop software is changing: programming languages still offer sup-
porting libraries, but there are many more resources available in the internet.
These wide set of resources can be other powerful off-the-shelf reusable libraries
and tools, usually available as Open Source Software (OSS).

This fact influences the way we program since developing a particular soft-
ware tool/library may be, in most cases, a matter of looking for the right (open
source) software/libraries solutions already available. Indeed, the internet en-
courages sharing our software. This new style of developing software, however,
needs to handle three important issues:

– Firstly, because there is so much OSS available in the internet it is difficult
to select the right tool/library. Thus, we need an appropriate framework to
support the analysis of the available alternatives.

– Secondly, because we may reuse different software artifacts, developed in dif-
ferent contexts, we need to integrate them into a coherent piece of software.

2 A Web Portal for the Certification of Open Source Software

– Thirdly, because we are reusing OSS, we may need to guarantee that it
satisfies certain properties before reusing it. For example, when developing
software that handles credit card information we may need the guarantee
that a piece of software to be reused conforms to specific security guarantees.
On a different context, if we if we are developing software for embedded
systems, we may need to guarantee that a reused library implements optimal
memory management.

In this paper we present a web portal for the analysis and certification of
Open Source Software that aims at improving on these three issues. The portal
works as a repository for tools that analyze source code. By the certification of
a piece of source code software we understand the process of analyzing the its
code while producing an information report about it.

The usage of our portal is heterogeneous in that it supports the analysis of any
programming language and distributed in the sense that it makes software anal-
ysis available in the web. Also, while already incorporating several pre-defined
certifications, the portal makes it very simple for any user to re-arrange these
certifications and to develop new ones: we designed and implemented a Domain
Specific Language (DSL) that allows portal users to define, in a high level and
abstract way, how certifications and software tools that analyze source code can
be integrated and combined. This allows the creation of personalized analysis
closely tied to the scope and nature of the necessary feedback.

This paper is organized as follows: in Section 2 we introduce the web portal
together with the software analysis scenarios it supports. In Section 3 we in-
troduce the DSL that allows the creation of new analysis suites, together with
its underlying working mechanisms. In Section 4, we describe the validations
that are ensured by the used of our combinators, and in Section 5 we introduce
implementation and usage issues of the portal. Finally, in Section 6 we conclude
the paper.

2 An Open Source Software Certification Portal

Software analysis is an interesting topic of research, whose motivations range
from the need to maintain software as easily as possible to the removal of its
bugs and the improvement of its overall characteristics [1–5]. While tools and
techniques for program analysis are very diverse, the fact is that they are often
too restrictive to gain wide acceptance. This has two main causes, in that tools
are often: i) designed for a specific programming language; ii) not flexible enough
to be tailored when the particular needs of a user differ from the built-in analysis.

In this section, we introduce the portal that we have constructed to act as
a repository for tools that are freely available and to enable the certification
of open source software based on such tools. By a Certification we mean the
execution of a software analysis tool that is capable of processing a source code
file and of producing an information report about it.

Our portal was constructed to make no distinction with respect to the pro-
gramming language or scope of the tools it hosts. Also, the tools that are hosted
can easily be combined therefore allowing the fast creation of test suites that

A Web Portal for the Certification of Open Source Software 3

perfectly match the needs of different programmers. The combination possibili-
ties, that we describe in the remaining of this section, include the possibility of
analyzing software components written in multiple programming languages. To
enable the definition of certifications and their composition, we have designed a
domain specific language, that we describe in the next section.

The portal that is the result of our work can be found at:

http://www.cross.di.uminho.pt/

Analyzing a single Open Source File The simplest way to use our portal is to
analyze a single source code file. This simple test, that is depicted in Figure 1,
may be useful to identify performance opportunities or to validate security re-
quirements, for example.

Certification ReportProgramL

Fig. 1. The flow of information in our portal when analyzing a single source code file.

In this illustration, a Certification is being used on a Program written in
language L, leading to a Report being produced. In the context of our portal,
reports are always defined as elements conforming to the following XML Schema:

<?xml version="1.0" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="report">
<xs:complexType>
<xs:sequence>
<xs:element name="file" type="xs:string"/>
<xs:element name="name_upload" type="xs:string"/>

<xs:element name="certification" minOccurs="1" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="title" type="xs:string"/>
<xs:element name="description" type="xs:string"/>
<xs:element name="result" type="xs:string"/>
<xs:element name="image" type="xs:string" minOccurs="0"/>
<xs:element name="html_result" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

4 A Web Portal for the Certification of Open Source Software

We have chosen an XML-based representation since it allows storing infor-
mation in different formats such as charts and images. Also, XML Schemas are
widely used, easily understood, and can be translated to different representations.
Indeed, we show our reports as HTML pages that are produced using XSLT.

Our portal is not only suitable for one isolated certification of a program.
Indeed, we show next how the same program can have several of its characteris-
tics certified at the same time by a set of certifications, that are combined into
a larger certification, while producing a single information report.

Multiple Analysis for a single Source Code File Analyzing software usually im-
plies running a number of tests provided by a set of tools which, together, allow
us to obtain information about diverse aspects of the software. Our system pro-
vides a simple interface to agglomerate and run multiple certifications while cre-
ating a single information report, as sketched in Figure 2. In this particular case,
the submitted ProgramL is subject to three independent analyses, Certification1,
Certification2 and Certification3, but the number of certifications that can be
composed is arbitrary.

Certification1 Report1

ProgramL

Certification3 Report3

Certification2 Report2 + Report

Fig. 2. Multiple analysis for one single source code file.

We observe that a set of reports is aggregated into a single final report. This
is a strategy that always needs to be followed in our setting, and that we have
adopted since analyzing multiple reports individually would become a tedious
and confusing task, for growing numbers of such reports.

The mechanisms presented so far allow a simple analysis of source code sin-
gle files. We, however, often want to certify software repositories, i.e., software
artifacts that are composed of several pieces, each of which in (at least) one
different file, and possibly expressed in a different programming language. Next,
we show how our web portal allows analyzing a set of source code files of this
kind.

Analyzing Multiple Source Files Our web portal supports the analysis of a set of
different source files, and in Figure 3 we show an example of this type of analysis
being performed.

In our system, uploading a set of files is achieved through an archiving format,
being it ZIP, Tar or RAR. Our web portal automatically infers information from
the compressed archive, extracts its regular files and parses them.

Again, the results of all certifications need to be aggregated into a single
report file. In this case, the final report groups either the results of applying

A Web Portal for the Certification of Open Source Software 5

Certification1 Report1ProgramL1

Certification3 Report3

Certification2 Report2

+ Report

ProgramL2

ProgramL3

Certification4 Report4

Archive

Fig. 3. A testing suite for multiple source files expressed in different languages.

the certification individually to each file, or the results provided by certifications
analyzing all the source files of the same type at the same time. The produced
reports will be as big as demanded by the certifications that are executed. While
sometimes their information is going to be too large for manual inspection, the
fact is that having them under XML files allows users to easily automate the
process of analyzing the information reports that are produced. In fact, the last
step of analyzing the report might be integrated into the certifications them-
selves, as we will see next, where we describe how to personalize and customize
certifications to the individual needs of each user.

Creating Customized Certifications So far, we have seen how our web portal
provides different types of analyzes for source code. These analyzes are supported
by the certifications that we have already integrated in our portal, a subset of
which we now present.

Certification Input Description

sLOCJavaFiles -java Lines of code of a Java file
sLOCCFiles -c Lines of code of a C file
sLOCHaskellFiles -hs Lines of code of a Haskell file
zips -zip CRC32 checksum, size (zipped and unzipped)
fleschKincaid -txt The Flesch/Flesch-Kincaid readability test
emptyCellSmell -xlsx The empty cell spreadsheet bad smell [6, 7]

While the certifications that have thus far been built-in the portal already
allow for several analysis, the fact is that within the framework described so
far, users do not have the possibility of combining the available certifications
according to their own particular needs. Furthermore, analyzing software is not
usually achievable by a single certification: it often implies using a variety of
tools and techniques, whose results, unified, provide the programmer with the
necessary feedback.

Ideally, we want to use the results of a certification as input to another,
which requires, apart from being able of performing a series of tasks through the
use of several tools, aggregating and treating the results obtained. Examining
and dealing with the information that is produced is as important as the results

6 A Web Portal for the Certification of Open Source Software

themselves. Just as an example, some analyses derive results that are not quan-
tifiable, and no information can be obtained from them. It is their treatment
and analysis through comparison that provides good feedback to the user1.

To solve the limitations described above, we have created a domain specific
language that we have integrated in our system. This language allows the cus-
tomization of each step of the process of analyzing software, which include data
extraction, treatment of the results and the analysis itself.

In Figure 4 we show how to implement a certification, Certification1, that is
composed of other simpler certifications.

Component1 Component2

Component4

Component3

Component5

+

Certification1

Fig. 4. An example of a certification composed by five components.

In our setting, certifications are often composed by smaller units capable of
communicating among themselves to achieve a state where the overall mechanics
of each unit and the flow of information among them is capable of producing
quantifiable results (Certifications). A Component is one of this smaller software
units. A Component is therefore a tool, capable of assessing and producing meta-
data but that is not powerful enough so that a whole analysis, i.e., a Certification,
is made out of it. Examples of components that we have already integrated in
our portal are shown next.

Component Input Output Description

readFile -c, -hs, -xml,
-java

-string Reads a file.

text2NLines -string -int Calculates the number of lines
int2Report -int -rep Creates a Report from a value
text2NFors -string -int Calculates the number of ’fors’
text2NIfs -string -int Calculates the number of ’ifs’
text2Report -string -rep Creates a Report from text

The concept of a component makes our system more powerful and config-
urable: not only the programmers and uploaders of tools are able of creating
small software units, but also end users have access to a wide number of this
specific tools that can easily be configured and adequate to concrete needs.

1 An example of such case are the Halstead Complexity Measures [8].

A Web Portal for the Certification of Open Source Software 7

Using existing components, our DSL provides an environment where the user
has the possibility to create customized certifications. Furthermore, the mecha-
nisms inherent to the DSL ensure that such components are isolated for errors
and that the certifications are optimized, for example, by running components
in parallel whenever possible. Also, it allows certifications made out of certifica-
tions themselves. In Figure 5 we show an example of a certification, Certification2

whose result is composed by Certification4 and by Certification3, which is actually
fed by a component, Component1.

Component1 Certification3

Certification4 Component2

Certification2

Fig. 5. A certification composed by both Components and other Certifications.

The definition of certifications based on components and other certifications
allows our system to provide good testing and analysis for virtually any envi-
ronment desirable, while also ensuring that the results are always on a standard
format. In the next section we introduce the domain specific language in detail,
together with practical and illustrative examples of its usage.

3 A Domain Specific Language for Creating Test Suites

The portal we present consists not only of an interface to analyze source code, but
also as a repository of analysis tools, that we understand as Components. These
tools can implement data handling and analysis or code slicing, for example, but
a certification may not be constructed out of a tool if it is not able of producing
a report in the required format. We could force users to upload a tool that,
by itself, can analyze source code and produce a Report but this would mean
forcing them to extend their solutions with features related to information input
and Report generation. Also, the repository would never suit users that created
a slicer, for example, since it is not an analysis technique by itself.

Figure 6 shows a context where a slicer (jSlicer) and an interface analyzer
(iAnalysis) are used together to create a certification. In this figure we see that
the certification implementer used a sub-certification that already existed on the
system (Certification1).

In order to implement the sketched certification with the framework described
so far, there exist (at least) two possible solutions: i) to manually integrate the
involved tools and to compile its results to obtain a single tool that implements
all this flow of information; or, ii), to run all the tools independently and to
manually transfer the information among them. For reasons that we have previ-
ously discussed, both alternatives are tedious and cumbersome as they demand
a significant programming/integration effort. The user would have to assume the

8 A Web Portal for the Certification of Open Source Software

jSlicer

Input Aggregator

iAnalysis

Certification1

Fig. 6. An example of a user-defined certification.

responsibility of compiling and organizing all the code, which in the end would
only solve a particular and specific problem.

In order to overcome this issue, we have created an interface, which was
integrated in our portal, and that makes it simple to create new certifications,
i.e., to organize components in a way that they provide the desired information
from uploaded information. This interface is provided as a DSL embedded in
Haskell as a combinator language. Before introducing our combinator DSL we
present a little snippet of how it can be used to create the certification in Figure 6:

Input >- (jSlicer,"-j","-i") >-
(iAnalysis,"-i","-csv") >|

Input >- certification1 >|> (aggregator,"-r","-r")

From this code, our portal automatically creates an appropriate certification.
What is more, it also statically analyzes the specification and checks it for type
errors, as we explain in more detail later in this section. In this particular exam-
ple, the user is specifying that he/she wants component JSlicer to be called with
the arguments -java and -interface in order to slice the interface out of a program
written in Java. This information is then channeled to the component iAnalysis,
and this chain of components runs in parallel with Certification1 that takes the
same Java input that jSlicer receives. The execution results of the two parallel
processes are later aggregated, by component aggregator, to form a report.

The combinator language that we propose starts by defining data-types for
certifications and components. These data-types are introduced as follows, as
Certification and Component, respectively.

data Certification = Certification Name ProcessingTree
data Component = Component Name InputList OutputList BashCall

type Name = String type InputList = [(Arg, Language)]
type Arg = String type OutputList = [(Arg, Language)]
type BashCall = String

data Language
= Java | C_Source | C_Header | Cpp | Haskell | XML | Report

-- .java .c .h .cpp .hs .xml Report XML

A Certification has a name and defines a particular information flow, which
is represented by data-type ProcessingTree, that we introduce and describe in
detail later. A Component is represented by a name, the list of arguments it

A Web Portal for the Certification of Open Source Software 9

receives and the list of results it produces. These lists, that are represented by
type synonyms InputList and OutputList, respectively, have similar definitions and
consist of varying numbers of arguments and results. The arguments(results) that
are defined(expected) for a particular component are then passed to concrete
bash calls. This is the purpose of type BashCall, which consists of the name of
the process to execute.

For a generic Java Slicer component that could be used in the context of the
snippet previously shown, we may define the following Component.

Component "Java Slicer" [("-j", Java)]
[("-i", Java), ("-s", Java)] "./jSlicer"

In order to represent the flow of information defined for a certification, we
have defined the data-type ProcessingTree:

data ProcessingTree = RootTree ProcessingTree
| SequenceNode ProcessingTree ProcessingTree
| ParallelNode ProcessingList ProcessingTree
| ProcessCert Certification
| ProcessComp Component Arg Arg
| Input

data ProcessingList = ProcessingList ProcessingTree ProcessingList
| ProcessingListNode ProcessingTree

The simplest processing tree that we can construct is the one to define a certi-
fication with a single component. This is expressed by constructor ProcessComp,
which also expects a name to be associated to the component and the speci-
fication of the options to run the component with. A certification can also be
defined by a single sub-certification, here represented by ProcessCert. In addition
to these, more complex certifications can be constructed by running processes
in sequence, using SequenceNode, and in parallel, using ParallelNode. Construc-
tor ParallelNode takes as arguments a processing list and a processing tree. The
first argument represents a list of trees whose processes can run in parallel. The
second argument is used to fulfill our requirement that all results of all parallel
computations must be aggregated using a component. Therefore, this processing
tree must always be a component that is capable of aggregating information into
one uniform, combined output.

The ProcessingTree data-type can be used, for example, to describe the global
information flow of a certification implementing a cyclomatic dependency anal-
ysis for Java programs while producing an information report.

RootTree
ProcessComp

Component "Cyclomatic Dependency"
[("-j",Java)]
[("-r",Report)]
"./exec"

"-j"
"-r"

10 A Web Portal for the Certification of Open Source Software

Having in hand the data-types that we have defined so far, we could already
create, in a manual way, certifications with all the capabilities that we propose
to offer. Nevertheless, manually expressing certifications would be of impractical
use. This is precisely the main motivation to develop a language where simple
and re-usable components can be combined into more complex ones, which them-
selves can grow as large as needed in order to implement extensive certifications.

With the addition of code becoming smaller, more elegant and easier to
read and understand, the fact is that it will also be statically analyzed and
type checked, and the script code that actually implements the certification it
defines will be automatically generated. These features will be introduced in
the remaining of this paper, together with the combinators that we use in our
language, that we present in detail next.

The Sequence Processing Combinator For sequencing operations, we define the
combinator >-. This combinator defines processes that are to be executed in
a chain, i.e, where the output of a process serves as input to the process that
follows it. When sequencing processes, it is also the case that if one of process
in the chain fails the entire chain will also fail.

The use of combinator >- must always be preceded by the use of constructor
Input, which signals the beginning of an information flow. Then, as many compo-
nents and certifications as needed can be used, as long as they again connected
by >-. Next, we show an example of a chain of events defined using >-.

Input >- (jSlicer,"-j","-i") >- (iAnalysis,"-i","-csv") >- certif

Combinator >- can be used to sequence certifications, components and other
processing trees that are defined using the remaining combinators of our lan-
guage. When it encounters a certification, the combinator connects the processes
before it to the processing tree of the certification, and ensures that the result
of this processing tree is then channeled to the processes that follow it. This is
the case of the sub-certification called certif. When sequencing components,
users need to supply to >- both the component and its input/output parameters.
In our particular example, jSlicer is to be called with input parameter -j to
state that the process accepts Java code as input and with output argument -i
to state that it slices the interfaces out of that code.

It is worthwhile to notice that the arguments that are specified within com-
ponents are very important in that they allow checking the flow of information
inter-processes for correctness, as the input and output types must match when
the information is channeled. When using >- to channel certifications, the user
is constrained by the input and output types that were associated to it, and this
is an information that must be carefully observed to ensure that the involved
types do match.

Finally, the result of a sequence defined using >- is a processing tree that
implements the combination of processes.

The Parallel Processing Combinator Now, we introduce the combinator that
enables the parallel composition of processes, This type of composition is ac-
tually supported by two combinators, >| and >|>. The first one is responsible

A Web Portal for the Certification of Open Source Software 11

for launching a varying number of processes in parallel, while the second is
mandatory after a sequence of >| uses and chains all outputs of all processes
to a component that is capable of aggregating them. An example of how these
combinators work together is as follows.

Input >- cert3 >|
Input >- cert1 >- cert5 >|
Input >- (jSlicer,"-j","-x") >- cert8 >|> (aggr,"-x","-r")

Combinator >| takes either a processing tree, a component, a certification
or a set of processes constructed using the other combinators. The arguments
of >| must always begin by constructor Input, to give a clear idea of the flow
of information. In the case of this listing it is indeed easy to spot where the
information enters a parallel distribution.

As for combinator >|>, it is mandatory for it to appear in the end of a
parallelized set of processes. It is used to aggregate all the outputs of all the
child processes into a single standard output, and it is able of combining varying
numbers of parallel processes using an aggregation component.

It is worthwhile to explain further the relationship between the parallel com-
binators >| and >|>. In trivial cases, >|> can actually replace the use of >-. This
is the case of the process Input >|> (aggr,"-x","-r"), which is equivalent to
Input >- (aggr,"-x","-r"), as both processes channel the input to the ag-
gregation component aggr. Finally, combinator >| can never appear alone in a
certification, due to the constraint that all parallel processes must be aggregated.

A Combinator to Create Certifications Our combinator language includes also
a combinator to create certifications and to associate names to them. This is
precisely the purpose of combinator +>, which always combines a processing
tree, given as its left argument, with a String, given to its right. It then creates
a certification associating the name with the processing tree.

As an illustration of the use of +>, consider again the process implementations
that use our sequence and parallel combinators. In both cases, the result of run-
ning the implemented code is a processing tree (i.e., an element of type Process-
ingTree), that needs to be given a name to become a certification (i.e., an element
of type Certification). By simply appending, for example, +> "certification"
to the end of both codes, we would precisely be creating certifications named
certification with the respective trees of processes. For the first example, this
would result in the code:

Input >- (jSlicer,"-j","-i") >- (iAnalysis,"-i","-csv") >- certif
+> "certification"

An important remark about +> is that it analyzes the processing tree that it
receives as argument and checks its correctness. This includes testing whether
the implied types match, by analyzing all the parallelized and sequenced pro-
cesses for their input and output types, and see whether or not they respect
the flow of information. Also, it is ensured that the processing tree produces a
report which is a mandatory feature for a certification in our system. Finally, if

12 A Web Portal for the Certification of Open Source Software

a certification is considered valid, a Perl script implementing its analysis is auto-
matically generated. For the example certification just given, this overcomes the
need to undergo the tedious and error-prone task of manually writing the script
given in Appendix.

In the next section, we explain in detail the features that are implemented by
our type analysis and how they are actually implemented under our framework.

The ’Finalize’ Combinator The last combinator of our language is #>>, that
combines a processing tree with a flag instructing it to either produce a script
implementing that tree or to simply check its types for correctness. The following
examples show the two possible uses for this combinator.

Input >- (comp1,"-j","-x") >- (comp2,"-k","-o") #>> ’t’
Input >- cert1 >- cert2 #>> ’s’

In the first case, we are demanding a check on the types of running component
comp1 after component comp2. This means that we are interested in knowing
whether the return type of comp1 is the same as the input type of comp2. With
the second case, we are asking for the script that implements chaining certifica-
tion cert2 after certification cert1 and also checks if the types match.

4 Type Checking on Combinators

In the previous section, we have introduced our combinator language for the
development of software certifications. In this section, we introduce a set of
validations that are automatically guaranteed to the users of our system.

For once, we inherit the advanced features of Haskell compilers. In particular,
the powerful type system of ghc helps us providing static guarantees on the
certifications that are developed. Indeed, the order in which the combinators
of our language are applied within a certification is not arbitrary, and the uses
that do not respect it will statically be flagged. The simplest example of this is
the attempt to construct a processing tree without explicitly using constructor
Input, but more realistic examples are also detected, e.g., not wrapping up a set
of parallel computations with >|> as well as the application of an aggregator.

Apart from static analyzes, we have also implemented some dynamic ones: we
want to analyze if the types match in the flow of information for a certification,
i.e., if the input type of a process matches the output type of the process feeding
it. In our setting, we perform such tests on elements of type ProcessingTree, that
we use our combinators to construct. These elements are then analyzed using
validations that are expressed as attribute grammars (AGs) [9]: i) for once, we
are analyzing tree-based structures, for which the AG formalism is particularly
suitable; ii) secondly, because AGs have a declarative nature which in our context
contributes to intuitive implementations that are easy to reason about and to
further extend. In fact, we believe that it would be simple to integrate in our
framework advanced AG-based and well studied techniques such as the detection
of circular dependencies [10] and the use of higher-order attributes [11].

Our type checking structurally breaks down into analyzing the nodes of a
processing tree which, in our case, correspond to the constructors of the Process-
ingTree data type. The type checking is computed as the value of an attribute

A Web Portal for the Certification of Open Source Software 13

called typeCheck, of type Boolean, which indicates whether or not the analyzed
types are correct. Apart from this attribute two other are involved: input and
output, that support typeCheck. These attributes are of type Language and for
each tree node give the input and the output types of that subtree. Next, we
will explain how these three attribute are calculated in each tree node.

Type Checking Component nodes Components are the simplest units of our pro-
cessing trees, and represent simple processes without any actual flow of informa-
tion. This means that their type is always correct, and that the value produced
for attribute typeCheck is always True.

As for the attributes input and output, they are computed analyzing the
Component against the invocation that is made for it in a ProcessingTree. In-
deed, whenever a component is associated to a certification, an element such as
ProcessComp comp inp out is defined. But comp itself is an element of type Com-
ponent, i.e., has the form Component name inplist outlist call. So, our validation
starts by detecting whether or not inp (respectively out) is an option of inplist
(respectively outlist). In case it is, attribute input (respectively output) returns
the Language option associated with inp (out). Otherwise an error is raised.

Type Checking Certification nodes Certifications are, similarly to components,
simple nodes of a processing tree, and in our setting, they must always be created
using combinator +>. Therefore, everytime this combinator is employed, as in
tree +> name, we automatically inspect the value of attribute typeCheck that
is computed for tree. If this value is True, we create the certification Certification
name tree; otherwise, no certification is constructed and an error is raised.

Actually, it is not only necessary that a processing tree type checks in order
for us to be able of producing a certification out of it. Indeed, all certifications
must always produce a report within our format, and we also check if the output
attribute computed for tree is Report before actually creating a certification.

Finally, when we consider sub-certifications, again we use the fact that they
are created using +>. Indeed, if the construction of a sub-certification succeeds,
then the tests so far described have all also succeeded. Therefore, for certifica-
tions under ProcessCert nodes, we can always ensure that they type check. Also,
attributes input and output are very simple to implement: we return the value
of the same attribute that is synthesized at the sub-tree of ProcessCert nodes.

Type Checking Sequence nodes Sequence nodes are used to have a processing
tree followed by another. They channel the information from the first processing
tree into the second one and returns the result of the second.

The input and output attributes for this node are very simple to compute:
input is the input type of the first processing tree, and output is the output
type of the second. Similarly, typeCheck is also simple to determine: apart from
checking if the output attribute of the first tree is equal to the input attribute
of the second one, our AG-based implementation also demands the typeCheck
attribute on each sub tree individually and checks whether both have value True.

Type Checking Parallel nodes Parallel nodes are the hardest to type check, in
that all their sub processes must have the same input type and same output

14 A Web Portal for the Certification of Open Source Software

type, and this output type must be the same as the input type of the component
that aggregates all the results that are computed in parallel.

Parallel nodes have two children: the second child, of type ProcessingTree, is
a component that aggregates all the results of the processes that run in parallel,
which are given as the first child, of type ProcessingList. The first validation we
perform is to check whether the output value of the ProcessingList matches the
input value of the ProcessingTree. If it does not, an error is raised; otherwise,
the processes within the ProcessingList are type checked. Now, type checking
processing lists is complex since it needs to analyze all the inputs of all the sub
processes, which can be components, certifications or processing trees and see if
they match, and to do this again for the outputs. We use the equality of the input
and output attributes for the current element of the list and for the subsequent
elements; by definition, a processing list must always contain at least one element
so the attribute will always return a value.

The input and output attributes for parallel nodes are simple to compute:
input is the input of one of the elements of the processing list, as they are all
the same, and output is the output of the aggregator component. Finally, we
have followed a safe approach when type checking processing lists: the input and
output attributes for a processing list are given only after the type checking for
the entire list is performed.

5 Implementation and Usage of the Portal

In this section, we present some implementation details about our portal and
also a simple example of how it can be used in practice to create a sample
Certification that outputs the number of lines of a source code file in C.

The portal has been constructed out of circa 320 lines of JavaScript and of
circa 1500 lines of HTML+PHP code. In fact, from these 1500 lines, around 125
interface with a simple database for storing information related to the certifica-
tions of the portal, which itself includes 3 tables and 12 records. The DSL that
the portal provides for re-arranging certifications and components was developed
out of around 400 lines of Haskell code.

In order to use the portal to construct a certification that outputs the number
of lines of a C program, we may rely on the existance of components readFile,
that reads a file, input2Nlines, that takes an input and computes the number of
its lines and int2Report, a component that takes an integer as input and produces
a report. Since these components are already available in the portal, we express
in our DSL a certification that arranges them as shown next:

Input
>- (readFile,"-c","-string") >- (cSlicer,"-string","-string")

(input2Nlines,"-string","-int") >- (int2Report,"-int","-rep")

This certification starts with a component that reads a file in C (which is
expressed by parameter -c) and returns a String (-string). A second component,
executed in sequence, reads the string that is returned and filters the main pro-
cedure out of it, a text which is fed to a third component that counts the number

A Web Portal for the Certification of Open Source Software 15

of its lines. Then, a final component transforms that Integer into an information
report. In the portal, after defining a certification, users must give it a name and
describe the analysis it implements, so that it may be reused in the future.

Once a certification for a particular programming language is available, users
just need to upload a file in that language to analyze it. Having done so, our
portal only presents as certification options for it the ones that match its type.
This means that, for example, having uploaded a Haskell file, users will only see
the certifications that are available for Haskell. Then, by choosing one particular
certification, e.g., the one we have just created, the web portal will produce a
report similar to the one shown in Figure 7.2

Fig. 7. The result of a certification as it appears in our web portal.

Our approach is modular, and even if a component with a given functionality
is not available, users can create it in any programming language. Indeed, as long
as that component is able of receiving information via STDIN and of outputting
information to STDOUT, any program is a candidate for a component. Also, we
expect the number of components and certifications available on the portal to
grow, which will make creating new certifications increasingly simpler.

Although we have used simple examples to illustrate our framework, this does
not compromise the range or the complexity of the analyses that we may perform.
For example, component input2Nlines could be replaced by one that implements
a powerful pointer analysis on C code. And it would be as easy to create a

2 In fact, the Figure 7 shows the HTML that corresponds to the XML that is produced.

16 A Web Portal for the Certification of Open Source Software

certification using it as it was to create the one above, without programmers of
the new component needing to concern with file reading or output formats.

6 Related Work

Several projects have focused on the analysis and assessment of software, being
the Squale project [12], QSOS [13] and the Alitheia Core [14] important examples
of this.

In comparison with our work, we believe that potential users of these sys-
tems see their extensibility and improvement limited by custom schemas of in-
formation or domain-specific languages for plug-ins development. This is either
because these projects are based on assessment models for OSS, or because they
create unified storage systems or even because they imply the usage of frames
of reference to create an evaluation that often depends on axis of criteria.

Our solution allows a wide range of tools based on different programming
languages and techniques to be imported into our portal, taken that such tools
are capable of running as bash tools and that they receive information through
the standard STDIN and STDOUT Unix’s streams. We believe this includes a
significant amount of already existing potential tools.

What is more, through the use of our DSL, virtually any tool in our portal can
be connected to other tools to create a flow of information (as long as the input
and output types of two chained tools match), easily allowing the introduction
of software assessments and the extension of such of assessments.

In [15] an implementation of the orchestration language Orc [16] is intro-
duced as an embedded domain specific language in Haskell. In this work, Orc
was realized as a combinator library using lightweight threads. Despite the sim-
ilarities on the use of Haskell combinators, this approach differs from our DSL
since we do not rely on any existing orchestration language. Rather, we generate
low level Perl scripts from combinators whose inputs are direct references to sys-
tem processes (Components). Also, the way we manage processes does not rely
on Concurrent Haskell, but rather on the parallelization features of the target
system. More information about our DSL, together with examples of the scripts
that it is able of generating can be found in [17].

7 Conclusions and Future Work

In this paper we present a portal for analyzing source code artifacts and pro-
viding information reports about them. Our portal supports various analysis
scenarios and is able of dealing with programs expressed in different program-
ming languages.

We have also implemented a DSL that allows manually re-arranging the
certifications and components that are built-in the portal. While several analyzes
are already possible, we rely on inputs from the community to extend further
the certification tools that our portal hosts, and by this to increase its impact.

Although our portal has been deployed and is fully-functional, we are still in-
corporating in it several features such as allowing for tool developers to configure
themselves how their tools are constructed and executed on our portal.

A Web Portal for the Certification of Open Source Software 17

References

1. Haigh, M.: Software quality, non-functional software requirements and it-business
alignment. Software Quality Control 18(3) (September 2010) 361–385

2. Stavrinoudis, D., Xenos, M., Peppas, P., Christodoulakis, D.: Early estimation of
users’ perception of software quality. Software Quality Control 13(2) (June 2005)
155–175

3. Dromey, R.G.: Software quality prevention versus cure? Software Quality Control
11(3) (July 2003) 197–210

4. Wilson, D.N., Hall, T.: Perceptions of software quality: a pilot study. Software
Quality Control 7(1) (May 1998) 67–75

5. Chulani, S., Boehm, B., Verner, J., Wong, B.: Workshop description of 4th work-
shop on software quality (wosq). In: Proceedings of the 2006 international workshop
on Software quality. WoSQ ’06, New York, NY, USA, ACM (2006) 1–2

6. Cunha, J., Fernandes, J.P., Ribeiro, H., Saraiva, J.: Towards a catalog of spread-
sheet smells. In: 12th Int. Conf. on Computational Science and Its Applications.
Volume 7336 of LNCS., Springer (2012) 202–216

7. Cunha, J., Fernandes, J.P., Mendes, J., Martins, P., Saraiva, J.: Smellsheet de-
tective: A tool for detecting bad smells in spreadsheets. In: Proceedings of the
2012 IEEE Symposium on Visual Languages and Human-Centric Computing.
VLHCC’12, Washington, DC, USA, IEEE Computer Society (2012) (to appear).

8. Halstead, M.H.: Elements of Software Science (Operating and programming sys-
tems series). Elsevier Science Inc., New York, NY, USA (1977)

9. Knuth, D.E.: Semantics of Context-free Languages. Mathematical Systems Theory
2(2) (1968) 127–145 Correction: Mathematical Systems Theory 5, 1, pp. 95-96
(March 1971).

10. Fernandes, J.P., Saraiva, J.: Tools and Libraries to Model and Manipulate Circular
Programs. In: PEPM’07: Proceedings of the ACM SIGPLAN 2007 Symposium on
Partial Evaluation and Program Manipulation, ACM Press (2007) 102–111

11. Swierstra, D., Vogt, H.: Higher order attribute grammars. In Alblas, H., Melichar,
B., eds.: International Summer School on Attribute Grammars, Applications and
Systems. Volume 545 of LNCS., Springer-Verlag (1991) 48–113

12. Squale: Front page. http://www.squale.org [Accessed in August 2012].
13. QSOS: Front page. http://www.qsos.org [Accessed in August 2012].
14. Alitheia Core: Front page. http://www.sqo-oss.org [Accessed in August 2012].
15. Campos, M.D., Barbosa, L.S.: Implementation of an orchestration language as

a haskell domain specific language. Electron. Notes Theor. Comput. Sci. 255
(November 2009) 45–64

16. Kitchin, D., Quark, A., Cook, W., Misra, J.: The orc programming language. In:
Proceedings of the Joint 11th IFIP WG 6.1 International Conference FMOODS ’09
and 29th IFIP WG 6.1 International Conference FORTE ’09 on Formal Techniques
for Distributed Systems. FMOODS ’09/FORTE ’09, Berlin, Heidelberg, Springer-
Verlag (2009) 1–25

17. Martins, P., Fernandes, J.P., Saraiva, J.: A purely functional combinator language
for software quality assessment. In: Symposium on Languages, Applications and
Technologies (SLATE ’12). Volume 21 of OASICS., Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2012) 51–69

