
Smelling Faults in Spreadsheets

Rui Abreu
HASLab/INESC TEC & Universidade

do Porto, Portugal
Email: rui@computer.org

Jácome Cunha
HASLab/INESC TEC & Universidade

do Minho, Portugal
Email: jacome@di.uminho.pt

João Paulo Fernandes
HASLab/INESC TEC &

RELEASE, Universidade da Beira
Interior, Portugal

Email: jpf@di.ubi.pt

Pedro Martins
HASLab/INESC TEC & Universidade

do Minho, Portugal
Email: prmartins@di.uminho.pt

Alexandre Perez
HASLab/INESC TEC & Universidade

do Porto, Portugal
Email: alexandre.perez@fe.up.pt

João Saraiva
HASLab/INESC TEC & Universidade

do Minho, Portugal
Email: jas@di.uminho.pt

Abstract—Despite being staggeringly error prone, spread-
sheets are a highly flexible programming environment that
is widely used in industry. In fact, spreadsheets are widely
adopted for decision making, and decisions taken upon wrong
(spreadsheet-based) assumptions may have, among other conse-
quences, serious economical impacts on businesses.

This paper proposes a technique to automatically pinpoint
potential faults in spreadsheets. The technique proposed combines
a catalog of spreadsheet smells that provides a first indication of
an eventual fault, with a generic spectrum-based fault localization
strategy in order to improve (in terms of accuracy and false
positive rate) on these initial results. Our technique has been
implemented in a tool which helps users detecting faults.

To validate the proposed technique, we consider one well
known and well documented catalog of faulty spreadsheets. Our
experiments provide two main results: we have filtered smells
that point faulty cells from smells that are not capable of doing
so, and we provide a technique capable of detecting a significant
number of errors: two thirds of the identified faulty cells are in
fact (documented) errors.

I. INTRODUCTION

Spreadsheet systems are a landmark in the history of
generic software products. They have achieved an astonishing
success in terms of both the number of their users and the
variety of domains in which they are nowadays used. Just as
an indication, it is estimated that 95% of all U.S. firms use
spreadsheets for financial reporting [1], that 90% of all analysts
in the industry perform calculations in spreadsheets [1] and
that 50% of all spreadsheets are the basis for decisions in
companies [2].

This importance, however, has not been achieved together
with effective mechanisms for error prevention, as shown by
several studies [3], [4], and by a long list of horror stories with
huge social and economic impact1.

One particularly sad example in this list involves Portugal,
which currently undergoes a financial rescue plan based on
intense austerity whose merit was co-justified upon [5]. The
fact is that the conclusions drawn there have been publicly
questioned given that a formula range error was found in the

1This list is available at: http://www.eusprig.org/horror-stories.htm

spreadsheet supporting the authors’ calculations. While the
authors have later re-affirmed their original conclusions, the
public pressure was so intense that a few weeks latter they felt
the need to publish an errata of their 2010 paper. It is further-
more unlikely that the concrete social and economical impacts
of that particular spreadsheet error will ever be determined.

In practice, all these evidences seem to suggest that spread-
sheet error prevention, detection and debugging techniques are
much needed. In this line, the natural trend of incorporating
well-established programming language features under spread-
sheets has been witnessed, for example, by the integration of
spectrum-based fault localization methods under a spreadsheet
system [6] and the identification of spreadsheet bad smells [7],
[8], [9], [10]. Note that both these techniques are well es-
tablished for general purpose programming languages: [11]
and [12], respectively.

In this paper, we combine bad smell detection and fault
localization techniques to create a new debugging framework
for spreadsheets. We proceed in three distinct phases.

Firstly, we analyze the extensive catalog of spreadsheet
smells that has been published in the literature [7], [8], [9],
[10]. Indeed, as a smell does not necessarily correspond to
an error, we seek to divide this catalog into two: i) the one
of good bad smells, i.e., the smells that are capable, on their
own, of signaling spreadsheet errors and ii) the one of bad
bad smells, that by nature do not contribute to this goal. This
analysis relies on the independent spreadsheet corpus [13],
which is composed of 73 spreadsheets that contain errors that
have previously been documented in detail.

Secondly, the cells that are signaled by the good bad smells
are provided as input to a fault localization algorithm. In this
step, we seek to confirm the faulty nature of certain cells, and
we also attempt to identify spreadsheet cells that may have
contributed to a fault.

Finally, we have extensively evaluated the debugging
method that we propose, again by using the corpora of [13].
Our results show that in average two out of three cells
identified by our techniques are (documented) errors, and that
we are able to locate ∼70% of the existing errors.

This paper makes the following contributions:

• we have implemented in a tool a state-of-the-art and
extensive catalog of spreadsheet smells;

• we have made a first distinction of these smells by
their natural ability of signaling, or not, spreadsheet
errors;

• we proposed a method that, for the first time, combines
smell detection with spectrum-based fault localization;

• our method has also been fully implemented in a tool;

• for a concrete and independent set of documented
spreadsheets, we have analyzed the results that we
obtain on them by our method.

This paper is organized as follows. We start by present-
ing an example to motivate our approach in Section II. In
Section III we briefly review the smells proposed for spread-
sheets. We continue in Section IV introducing the current
techniques for spectrum-based fault localization. The tool we
have implemented is explained in detail in Section V. In
Section VI we evaluate how each smell would behave as
a fault detector and filter out those that cannot explain any
fault. Section VII details how to use smells as inputs to a
spectrum-based fault localization algorithm to find errors in
spreadsheets. In Section VIII we discuss related work and
finally in Section IX we draw some conclusions and present
future work.

II. MOTIVATION

This section motivates our approach using a spreadsheet
taken from the corpus of spreadsheets we use to validate our
techniques [13].

This spreadsheet can be seen in Figure 1a and represents
the estimated expenses and revenues of a company, with
parameters like Labor, Rent, and Taxes. This spreadsheet has
ten cells whose observed values are wrong (marked in red2).
As the net income depends on other values that are wrong, the
ultimate goal of using such a spreadsheet is compromised and
will produce incorrect estimations.

In our approach, the first step to find these faulty cells is
to apply spreadsheet smells to the spreadsheet, individually or
in combination, and signal the cells that are considered smelly
(but not necessarily faulty). In a second step of our approach,
the cells identified previously as smelly act as input of a
fault localization algorithm to discover potential problematic
cells. Finally, we signal toxic cells, i.e., cells that work as
dependencies of faulty ones. Finally, we point a set of cells
that we indicate as being potential faulty.

Let us consider the spreadsheet of Figure 1a. Just applying
a single spreadsheet smell - Multiple References [8] - combined
with the fault-localization algorithm allows us to identify the
errors displayed in the spreadsheet of Figure 1b.

We see that in this particular case, 8 out of 10 errors were
found by our method. Moreover, in this example our approach
did not produce any false positives results. That is to say that
it did not marked as faulty any correct cell. In this paper we

2We assume colors are visible on final digital/printed versions of this paper.

consider a full catalog of spreadsheet smells and a large corpus
of documented faulty spreadsheets and our approach is able to
locate more more than 70% of all faulty cells. About 2 out of
3 cells that we identify correspond to a (documented) fault.

III. SPREADSHEET SMELLS

The concept of code smell (or bad smell, or just smell)
was introduced by Martin Fowler as a first symptom that
may correspond to a deeper problem in a system [12]. This
means that a smell does not always imply an error: a method
with ten arguments, despite being smelly, may be perfectly
implemented.

Along with the definition of smell, Martin Fowler also
proposed an initial catalog of potential problems in the form of
smells. Although this catalog was originally defined for source
code, the smells identified in it may sometimes be applied to
other artifacts, such as spreadsheets.

Fowler’s work inspired several authors to propose different
catalogs of smells for spreadsheets. In the context of our
work, we have taken the union of all the proposed catalogs,
obtaining the comprehensive list that we review next. The first
six smells in this list were proposed in [9], [14], and exploit, for
example, statistical properties of spreadsheet data in the same
row/column. The following five smells have appeared in [8],
and refer to spreadsheet formulas. Finally, the last four smells
in this list deal with inter-worksheet smells [7]. Each smell
has a number which will be used latter on for identification.

• 1 - Standard Deviation: This smell detects, for a group
of cells holding numerical values, the ones that do not
follow their normal distribution.

• 2 - Empty Cell: Cells that are left empty but that occur
in a context that suggests they should have been filled
in are detected by this smell.

• 3 - Pattern Finder: This smell finds patterns in a
spreadsheet such as a row containing only numerical
values except for one cell holding a label or a formula
or being empty.

• 4 - String Distance: Typographical errors are frequent
when inputing data. In order to try to detect these type
of errors in spreadsheets, this smell signals string cells
that differ minimally with respect to other surrounding
cells.

• 5 - Reference to Empty Cells: The existence of for-
mulas pointing to empty cells is a typical source
of spreadsheet errors. This smell detects such occur-
rences.

• 6 - Quasi-Functional Dependencies: In [15] it is
described a technique to identify dirty values using
a slightly relaxed version of Functional Dependencies
(FD) [16]. There exists a FD from a column A to a
column B if multiple occurrences of the same value
in A always correspond to the same value in B. This
smell flags situations where equal values in a column
correspond to the same values in another column,
except for a small number of cases.

• 7 - Multiple Operations: This smell is inspired by
the well-known code smell Long Method. As in long

(a) Spreadsheet with errors. (b) Spreadsheet with faults located.

Fig. 1: The same spreadsheet before and after our faults detection technique is applied.

methods, formulas with many different operations
will likely be hard to understand. This is especially
problematic in spreadsheets since in most spreadsheet
systems, there is limited space to view a formula,
causing long ones to be cut off.

• 8 - Multiple References: This smell appears when a
formula references many different cells, reducing its
understandability. An example is: SUM(A1:A5; B7;
C18; C19; F19).

• 9 - Conditional Complexity: As it happens in source
code, this smell detects formulas with many condi-
tional operations. For example: IF(A3=1, IF(A4=1,
IF(A5<34700, 50)), 0).

• 10 - Long Calculation Chain: Spreadsheet formulas
can create chains of calculations since they can refer
to other formulas. To understand the purpose of such
formulas, users must trace along multiple steps to find
the origin of the data and intermediate calculations.

• 11 - Duplicated Formulas: This smell indicates that
similar snippets of code are used throughout a class.
This also happens in spreadsheets since some for-
mulas are partly the same as others. For example,
SUM(A1:A6)+10% and SUM(A1:A6)+20% have the
first part duplicated.

• 12 - Inappropriate Intimacy: This smell was proposed
to flag classes with too many dependencies of another
class. In spreadsheets this can be adapted to recognize
a worksheet that is too much related to a second one.

• 13 - Feature Envy: This smell appears when a formula
is more interested in cells from another worksheet,
which suggests it should be moved to it.

• 14 - Middle Man: A middle man is a class that

delegates most of its operations to other classes, and
does not contain enough logic to justify its own
existence. In spreadsheets this occurs if a ’middle
man’ formula contains only a reference to other cells,
like the formula =Sheet1!A2.

• 15 - Shotgun Surgery: This happens in spreadsheets
when a formula is referred by many different formulas
in different worksheets, which implies that one change
results in the need of making a lot of little changes

IV. SPECTRUM-BASED FAULT LOCALIZATION

In this section we describe the Spectrum-based Fault Lo-
calization (SFL) approach to software debugging, and present
its application to find faults in spreadsheets.

A. Software Debugging with SFL

SFL is a debugging technique that calculates the likelihood
of a software component being faulty [17]. SFL exploits cov-
erage data collected from passed/failed system runs. A passed
run is a program execution that is completed correctly (thus
behaving as expected), and a failed run is an execution where
an error was detected [11]. The criteria for determining the
execution outcome can be from a variety of different sources,
namely test case results and program assertions, among others.
The coverage data is collected at runtime, via instrumentation,
and is used to build a hit-spectra matrix.

The hit spectra of N executions constitutes a binary N×M
matrix A, where M corresponds to the instrumented compo-
nents of the program. In this binary matrix, each column i
represents a system component and each row j represents an
execution (e.g., a test case). A matrix entry aij represents
whether component i was touched (1) or not (0) during
execution j. The information of passed and failed runs is

gathered in an N -length vector e, called the error vector. The
pair (A, e) serves as input for the SFL technique.

After gathering the input information, the next step consists
in determining what columns of the matrix A resemble the
error vector e the most. This is done by quantifying the
resemblance between these two vectors by means of similarity
coefficients [18]. These coefficients are used to estimate the
suspiciousness of a given software component being faulty, as
its similarity coefficient (relative to the error vector) and its
failure probability are directly related [19].

Several similarity coefficients do exist [11]. One of the
best performing similarity coefficients for fault localization is
the Ochiai coefficient [19], [20]. This coefficient was initially
used in the molecular biology domain [21], and is defined as
follows:

sO(j) =
n11(j)√

(n11(j) + n01(j)) · (n11(j) + n10(j))
(1)

where npq(j) is the number of runs in which the component
j has been touched during execution (p = 1) or not touched
during execution (p = 0), and where the runs failed (q = 1)
or passed (q = 0). For instance, n11(j) counts the number
of times component j has been involved in failed executions,
whereas n10(j) counts the number of times component j has
been involved in passed executions. Formally, npq(j) is defined
as:

npq(j) = |{i | aij = p ∧ ei = q}| (2)

In fact, the Ochiai coefficient can be regarded as the cosine
between two vectors in n-dimensional space.

The similarity coefficients that are computed can rank
the system components according to their suspiciousness of
containing the fault. A list of components, sorted by their
similarity coefficient, is then presented to the user, helping pri-
oritize his/her inspection of software components to pinpoint
the root cause of the observed failure.

B. Spreadsheet Fault Localization with SFL

In order to use a traditional software debugging technique
(like SFL) to aid spreadsheet fault localization, adaptations
to this scope need to be performed [6], [22]. This happens
because, in the spreadsheet paradigm, the concept of test case
executions is non-existent. Code coverage also does not exist
since there are no explicit lines of code like in traditional
programming paradigms.

As an alternative to code coverage, cells and cell references
can be used to compute a hit-spectra matrix, one of the
inputs to the SFL technique. Here, a cone represents the data
dependencies of each cell, and is given by:

Cone(c) = c ∪
⋃

c′∈ refs(c)

Cone(c′) (3)

where refs(c) is the set of cells that cell c references. For each
cell, its cone can be computed.

Spreadsheets Analysis Framework

Google
Docs

Local
File

Apache
POI

Easy
Manipulation

of
Spreadsheets Spreadsheet

Information

New
Spreadsheet

Fig. 2: The Spreadsheet Analysis Framework we used.

From these cones, the hit-spectra matrix can be generated,
where each row j has the dependencies of the output cell
cj . Output cells of a spreadsheet are the set of cells that
are not referenced by any other cell. As each row of the
matrix corresponds to one of the output cells, the error vector
represents their correctness.

The hit-spectra matrix and the error vector allow the use
of the SFL algorithm to compute the failure suspiciousness of
each spreadsheet cell. We have chosen the Ochiai coefficient
as the suspiciousness metric for spreadsheet subjects because,
according to a recent empirical study comparing similarity
measures to diagnose spreadsheets [22], this coefficient was
shown to be one of the best performing.

V. THE SmellSheet Detective FRAMEWORK

We have extended our SmellSheet Detective tool [14] in
order to fully implement all the smells in the spreadsheet
catalog, and to implement the algorithms for fault localization.
This is an an extension from previous works [9], and the up-
graded version of this tool was used to perform the experiments
presented in this paper.

The SmellSheet Detective supports both spreadsheets writ-
ten in the desktop spreadsheet system Excel and spreadsheets
hosted on the Google Drive cloud platform. The support for
online spreadsheets was added because migration from desktop
to online-based applications is becoming very common, with
popular office suites seeing online versions.

The use of Google Drive’s variant of our tool requires a
registered and valid login on that platform. Our tool allows the
analysis of one spreadsheet at a time, but within it the user can
choose either a single worksheet or the full spreadsheet.

This tool uses the Java APIs Apache POI3, in its version
3.8, for manipulating various file formats based upon the
Office Open XML standards (OOXML) and Microsoft’s OLE
2 Compound Document format (OLE2). Basically, using this
API one can easily read and write Microsoft’s Excel files.

To be able to access Google’s Drive accounts, we used the
Google Data API4. The Google Data Protocol, which we used
in version 1.47.1, is a Google owned technology for reading,
writing, and modifying information on the web. To develop the
SmellSheet Detective we used the Java version of the Google
Spreadsheets API, which enables the creation of applications
that read and modify data in spreadsheets stored in Google
Drive accounts.

3http://poi.apache.org
4https://developers.google.com/gdata/

The implementation of the smells strictly follows the
guidelines provided by their original source and are individual
and exclusive components of the tool, i.e., the tool always runs
the smells individually and sequentially but filters, intercepts
and processes their results as a whole. These results are used
by SFL.

Figure 2 briefly describes our framework for spreadsheets
analysis. Files coming either from local or network storage
are used to instantiate and populate an internal Apache POI
object. This object is used, via our abstractions on Apache POI,
to perform a set of analysis that go from smells detection to
fault localization and toxic cells analysis.

The smells are implemented using this simpler abstraction
over Apache Poi and information can be displayed either
as meta-information, via standard output streams or via the
creation of new spreadsheets, where the user also has options to
color different cells or add side information to either individual
cells or the whole sheets.

The SmellSheet Detective together with a video demon-
strating its use and the analysis framework are available at
http://ssaapp.di.uminho.pt.

VI. FILTERING OUT BAD BAD SMELLS

The first step of the new technique that we propose in
this paper consisted in analyzing the individual performance
in terms of error detection for all the smells already proposed
in the literature. Our aim here was to filter out the bad smells
that by their nature do not contribute to identifying spreadsheet
errors, and, for all other smells, to rank their potential ability
to detect errors.

In order to realize this step, we have devised the following
experiment.

A. Experimental Setting

We analyzed a set of well-known spreadsheets, the ones
that form the Hawaii Kooker Corpus, containing 73 spread-
sheets created from a real world problem by third-year un-
dergraduate students and MBA students at the University of
Hawaii. The errors in these spreadsheets were not “seeded” as
they were naturally created by students. Part of the corpus was
used in a study by Aurigemma and Panko to compare detection
rates for static inspection and human inspection [13].

This corpus was developed aiming at analyzing both how
end users structure their data in a spreadsheet, and how
correct their solution is. This corpus also includes a correct
spreadsheet to compare all others against. In order to prepare
the corpus for automatically locating end-user faults with our
tool, we needed to:

• First, we manually inspected and compared the correct
solution to the end-users solutions. As a result of this
comparison, we marked all errors in the spreadsheets.
By error, we mean a cell that does not have a correct
value. We also consider that a cell defined by a correct
formula is an error when it depends on a cell marked
with an error.

• Second, we manually defined the total number of cells
of the spreadsheets. The total number of cells is given

by the number of cells of the smallest rectangle that
contains all the non-empty cells of the spreadsheet.
This consideration will not influence the computation
of the Empty Cell smell, since in its definition an
empty cell must be surrounded by non-empty ones.

B. Analyzing the Smells

We have performed a first analysis of the corpus without
any aid from the SFL. In this step we only applied all the
smells, individually, on all the spreadsheets of the corpus and
marked the results, which can be seen in Table I.

TABLE I: Bad smells individual performance.

Smell True Positives False Positives
11 Duplicated Formulas 436 114
8 Multiple References 313 29

14 Middle Man 305 172
10 Long Calculation Chain 88 13
6 Quasi-Functional Dependencies 86 19

12 Inappropriate Intimacy 46 125
3 Pattern Finder 16 29
9 Conditional Complexity 6 16
7 Multiple Operations 6 16

15 Shotgun Surgery 0 1
13 Feature Envy 0 0
5 Reference to Empty Cells 0 0
4 String Distance 0 21
2 Empty Cell 0 0
1 Standard Deviation 0 0

In this table we can see a list of smells (their number and
name), how many cells they pointed that really represented
faulty cells (True Positives) and how many cells they marked
that were perfectly correct (False Positives). The smells in this
table are ordered by the descending number of true positives.

On this phase we were not concerned with sorting the
smells based on how good they perform. The objective was to
analyze if there were some that would provided no interesting
results at all, which happened. As we can see from the table,
the last 6 smells cannot detect any cell with faults, with the 15
and 4 detecting only cells that contain no faults at all (false
positives). From these results, we have split the smells into
two groups:

a) Good Bad Smells: This group contains the smells
11, 8, 14, 10, 6, 12, 3, 9, 7. These smells have different
degrees of success, but to some extent they are all capable of
detecting cells that really contain faults. This is important as
we will use a two step strategy - smell detection and SFL -
where the final responsibility for the results is on the latter
step.

b) Bad Bad Smells: This group contains the smells 15,
13, 5, 4, 2, 1. None of these smells was capable of detecting at
least one cell with a fault. In fact, two of these smells pointed
to correct cells. This result means we can discard these smells.
Even though we are counting on the SFL to process the results
from applying the smells, there would be absolutely nothing
it could do with the results of this group. Indeed, it would
misguide the SFL process.

This step fulfilled two objectives. First, we were capable
of completely discharging a group of smells from the existing
literature. This does not mean they are not relevant, as they still

point bad practices and design in spreadsheets. It just means
that, to what fault localization is related, they do not produce
any interesting results. Second, it will provide us with a set
of smells that we can use to apply our technique. In the next
section, we will describe how to do so.

VII. GOOD BAD SMELLS MEET SPECTRUM-BASED
FAULT LOCALIZATION

In the previous section we have selected the smells that
can produce good results, that is, that can point out cells that
have faults.

In this section we will combine this result with an SFL
algorithm. This will allow to validate the faults detected by
the smells, and further detect other existing faults in the
spreadsheet that were not yet detected.

Next we present the algorithm we devised to implement
this new technique.

A. The Algorithm

The algorithm of the approach is depicted in Algorithm 1.
The inputs of our approach are 1) the spreadsheet under test
(S) and 2) the threshold value for the suspiciousness score
given to each cell (C).

Algorithm 1 Smells as input to SFL.
Input:

Spreadsheet S
Suspiciousness Threshold C

Output:
Diagnostic Report R

1: L ← CALCULATESMELLS(S, T) . Compute the smell listing
2: references← ø . Cell references computation
3: cones← ø
4: for all cells c in S do
5: cones[c]← CONE(c)
6: references← references ∪ cones[c]
7: end for
8: output← S \ references . Output cells
9: M ← |output|

10: ∀i∈{1...M} : A(i)← ø . Hit spectra computation
11: ∀i∈{1...M} : e(i)← 0
12: for i = 1→M do
13: A(i)← cones[output[i]]
14: if HASSMELL(L, output[i]) then
15: e(i)← 1
16: end if
17: end for
18: R← SFL(A, e) . Fault Localization
19: R← FILTER(R, C) . Prune suspiciousness listing
20: R← R∪ TOXICCELLS(L)
21: return R

As SFL computes a ranking of cells, sorted by their
suspiciousness of containing a fault, the last input of our
algorithm, C, is used as a way to insure that not every cell
with nonzero suspiciousness gets inspected. In the software
debugging domain, we often use a metric called Ce that
evaluates the effort required by the user to pinpoint faulty
locations. This metric indicates the number of components
(e.g., statements) that the user must inspect until the fault
is reached. In the spreadsheet domain, we adopted a similar

route, by setting a threshold on the cells to be inspected.
This threshold can be either by value (i.e., only consider cells
whose suspiciousness is greater than the threshold), or by
percentile (i.e., only consider cells whose suspiciousness is
above a certain percentile). This way, we are able to not only
evaluate the effort required by the user in his inspection of
the diagnostic ranking, but also measure the amount of faults
found and the amount of false positives given by our approach.

First, on line 1 the list of smelled cells is computed. After
that, on lines 2 to 7 the cones for every cell are calculated.
A cone represents the dependencies of a cell – either direct
or indirect references. Also computed is the set of all cells
that are references of other cells (useful for finding out output
cells). The worst case time complexity of this step is O(N2),
whereas the spatial complexity is O(N).

On line 8, the set of output cells is calculated. Output
cells are not referenced by any other cell, therefore they can
be computed by subtracting the set of referenced cells to
the spreadsheet. With the information about output cells, cell
cones, and smelled cells, we are able to compute the inputs to
SFL – a hit spectra matrix, and an error vector. As depicted in
lines 10 to 17, each line of the hit spectra matrix is the cone
of an output cell, and its corresponding error vector entry is
either 1 if the output cell has a smell, and 0 otherwise. This
step has a time complexity of O(N) and a spatial complexity
of O(N).

With the hit spectra matrix A and the error vector e, the
fault localization is performed, by calling the SFL method
on line 18, having time complexity of O(N2) and a spatial
complexity of O(N).

Finally, the suspiciousness filtering step removes any com-
ponent from list R that is below the C threshold. This step
has both time and space complexities of O(N), and the last
step expands the listing to include toxic cells, that are cells
whose references are smelly cells. These steps have a worst
case space complexity of O(N2) and a time complexity of
O(N), where N is the total number of non-empty cells of a
spreadsheet.

Overall, our approach has a worst-case time complexity of
O(N2) and a spatial time complexity of O(N), where N is
the total number of non-empty cells of a spreadsheet.

B. Analyzing the Algorithm Results

The SFL algorithm uses cells marked by the smells to
compute a ranking of faulty cells: cells with higher rank have
a higher probability of containing errors. We can configure our
algorithm with a threshold that defines the effort to pinpoint
faulty locations. Therefore, we will consider two possibilities:
first, we mark as faulty cells whose suspiciousness is 100%
only, so that we maximize true positives. Second, we consider
a percentile: we mark as faults 10% of the cells with highest
suspiciousness.

We start by considering the first threshold. This is the
approach a programmer would follow when considering the
results produced by an SFL algorithm for regular programming
languages: programmers will focus on searching for errors in
the parts marked by the algorithm as being tagged as very
suspicious.

We also want to understand if combining smells improves
the results. Thus, we consider all possible combinations of 1, 2,
3, 4, and 5 smells. Figure 3 shows, in average, the percentage
of cells marked by our algorithm that are in fact documented
errors in the spreadsheets. We do not consider combinations of
6 smells of more as we did not find in the corpus we are using
a cell containing such a value: 5 was the absolute maximum.

0.67	
 0.66	

0.65	

0.60	

0.58	

0.54	

0.56	

0.58	

0.60	

0.62	

0.64	

0.66	

0.68	

1	
 smell	
 2	
 smells	
 3	
 smells	
 4	
 smells	
 5	
 smells	

%
	
 o
f	
 c
el
ls
	
 m

ar
ke
d	

w
hi
ch
	

co
nt
ai
n	

sm

al
ls
	

Number	
 of	
 smells	
 combined	
 together	

Fig. 3: Percentage of cells marked by the algorithm that are
in fact errors.

The best results are achieved when we give as input to
SFL cells detected by a single smell: on average in three
cells marked as faulty, two cells do have an error, value that
decreases when more smells are added. When combining 5
smells, only one cell out of two marked cells in average is a
error.

Next, we present the results of combining each of the 9
Good Bad Smells individually with SFL. Figure 4a shows,
for each smell, the percentage of errors found over the total
number of marked cells, and the percentage of errors found
over the total of existing errors.

We can see that the five smells that combined with SFL
locate more errors are: Multiple References with 72.5% of the
total errors, Long Calculation Chain with 53.1%, Standard
Deviation with 50.6%, Multiple Operations with 14.5% and
References to Empty Cells with 14.2% of the total errors
found. These are also the smells that produce the best true/false
positives relation. For example, Multiple References produces
3 times more true positives than false ones. On practice this
means that every three out of four marked cell contains an
error.

In Figure 3 we can see the average results of combining
different smells. Next, we consider the combination of the
best smells, according to the results shown in Figure 4a. The
results of the combinations of 1 up to 5 smells are presented
in Figure 4b.

As expected, by giving more smelly cells to the SFL
algorithm the number of detected errors increases. We are able
to locate 77.9% of errors with this setting. However, because
different smells may mark the same cells as smelly (this is
the case of smells 8 and 10), this represents only a small
improvement with a high cost: the number of false positives
doubles, which increases the work of a user of our technique
to detect errors.

Next, let us consider the 10% percentile threshold, which
marks as faults 10% of the marked cells with highest suspi-
ciousness. Figure 5 presents such results when considering the
combination of (up to) five smells.

0.49	
 0.48	
 0.48	

0.55	

0.44	

0.00	

0.10	

0.20	

0.30	

0.40	

0.50	

0.60	

1	
 smell	
 2	
 smells	
 3	
 smells	
 4	
 smells	
 5	
 smells	
 %
	
 o
f	
 c
el
ls
	
 m

ar
ke
d	

w
hi
ch
	
 c
on

ta
in
	
 e
rr
or
s	

Number	
 of	
 smells	
 combined	
 together	

Fig. 5: Percentage of cells that contain errors using the 10%
best results from SFL.

It is quite clear that the best case scenario in this case is
worst than the worst case scenario in the approach where we
use only the faults marked by SFL with the 100% threshold
(see Figure 3).

We can conclude that the combination of smells and SFL
produces very good results when a single smell is considered
and a 100% suspiciousness threshold is used. A combination of
smells does (slightly) improves the number of detected errors,
but at a high cost: the increase of false positives which implies
an increase in the work to locate faults in a spreadsheet.

C. Threats to validity

The main threat to external validity of these empirical
results is the fact that, although the subjects were all real
spreadsheets, it is plausible to assume that a different set of
subjects, having inherently different characteristics, may yield
different results. This is particularly true if we consider inter-
worksheet smells.

A second threat is the fact that we use only one corpus
of spreadsheets. Although this is the case, it is also true
that it is the largest corpus of spreadsheets with their errors
documented, and it was created with the goal of providing
a research corpus for spreadsheet error detection. This is a
necessary condition to execute such a study. If the errors
are not known, we can not provide an analysis that is not
speculative.

Threats to internal validity are related to faults in our
underlying implementation, such as smell detection, hit spectra
generation, or fault localization. To minimize this risk, some
testing and individual result checking were performed before
the experimental phase.

VIII. RELATED WORK

The work presented in this paper focuses on identifying
smells in a spreadsheet and feeding them into a fault local-
ization framework. Other efforts related to using spreadsheet
smells and metrics to detect errors in spreadsheets have been
proposed before [23], [24]. Hermans et al. [7] proposed an
approach to locate spreadsheet smells and communicate them
to users via data flow diagrams. Recently, an approach to
detect and visualize data clones (i.e., formulas whose values
are copied as plain text to a different location) was also
described [25].

GoalDebug [26] is a spreadsheet debugger targeted at end
users. Whenever the computed output of a cell is incorrect, the

38%	

38%	

55%	

403%	

303%	

383%	

453%	

37%	

172%	

0.99%	

0.99%	

2.64%	

53.05%	

72.49%	

14.50%	

14.17%	

7.58%	

50.58%	

0%	
 50%	
 100%	
 150%	
 200%	
 250%	
 300%	
 350%	
 400%	
 450%	
 500%	

Middle	
 Man	
 (14)	

Innapropriate	
 In7macy	
 (12)	

Duplicated	
 Formulas	
 (11)	

Long	
 Calcula7on	
 Chain	
 (10)	

Mul7ple	
 References	
 (8)	

Mul7ple	
 Opera7on	
 (7)	

References	
 to	
 Empty	
 Cells	
 (5)	

PaJern	
 Finder	
 (3)	

Standard	
 Devia7on	
 (1)	
 True/False	
 Posi7ves	

%	
 errors	
 found	

(a) True positive over false positives and percentage of errors found on single smells.

303%	

303%	

176%	

177%	

176%	

72.5%	

72.5%	

76.8%	

77.8%	

77.9%	

0%	
 50%	
 100%	
 150%	
 200%	
 250%	
 300%	
 350%	
 400%	

8	

8,	
 10	

1,	
 8,	
 10	

1,	
 7,	
 8,	
 10	

1,	
 5,	
 7,	
 8,	
 10	

N
um

be
r	

of
	
 th

e	

co
m
bi
ne

d	

sm

el
ls
	

True/False	
 Posi8ves	

%	
 errors	
 found	

(b) Combination of 1 up to 5 of the smells with better results.

Fig. 4: Analysis of the behavior of smells individually and combined.

user can supply that cell’s expected value. This expected value
is used by the system to generate a list of change suggestions
for cell formulas, ranked using a set of heuristics. A drawback
of this approach is that users are expected to detect errors in
the spreadsheet, and provide the system with the correct output
value. In our approach, the error detection phase is automated
by testing spreadsheets against our smell catalog.

There are several spreadsheet analysis tools that try to
find inconsistencies in spreadsheet formulas [27], [28], [29],
[30], [31], [32], which differ in the rules they employ and the
amount of user effort required to provide additional input. Most
of these approaches require the user to annotate the spreadsheet
cells with additional information. An exception is the UCheck
system [33], which can perform unit analysis automatically by
exploiting header inference techniques [27].

Other approaches that aim at minimizing the occurrence
of errors in spreadsheets include code inspection [34], refac-
toring [10] and the adoption of better spreadsheet design
practices [35], [36], but none of these approaches focuses on
spreadsheets’ debugging.

IX. CONCLUSION

In this paper we described an approach to automatically
locate faults in spreadsheets. This approach uses a catalog
of 15 well known documented spreadsheet smells to perform
smell detection and provide an indication of possible faults in
the spreadsheet.

This set of smells was divided in two: one containing
smells that actually point out faulty smells, and another with
the smells that cannot find cells with faults.

The cells detected by the good smells, the first set, are fed
into a spectrum-based fault localization framework, commonly
used in the software debugging field, as a way to improve
the quality of the diagnosis. Our empirical experiments, using
a well known-faulty spreadsheet catalog, have shown that
our approach is able to detect more than 70% of errors in
spreadsheets in a setting where two out of three identified
faulty cells are documented errors.

There are several research questions that still require further
investigation. First, we plan to provide natural and intuitive
visualizations to improve user’s comprehension of diagnostic
data. Second, we plan to study ways to provide fix suggestions
to users, namely by mutating spreadsheets [37].

REFERENCES

[1] R. R. Panko and N. Ordway, “Sarbanes-oxley: What about all the
spreadsheets?” CoRR, vol. abs/0804.0797, 2008. [Online]. Available:
http://dblp.uni-trier.de/db/journals/corr/corr0804.html#abs-0804-0797

[2] F. Hermans, M. Pinzger, and A. van Deursen, “Supporting professional
spreadsheet users by generating leveled dataflow diagrams,” in Proc.
of the 33rd Int. Conf. on Software Engineering, ser. ICSE ’11.
New York, NY, USA: ACM, 2011, pp. 451–460. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985855

[3] R. Panko, “Spreadsheet errors: What we know. what we think we
can do.” Proceedings of the 2000 European Spreadsheet Risks Interest
Group (EuSpRIG), 2000.

[4] ——, “Facing the problem of spreadsheet errors,” Decision Line, 37(5),
2006.

[5] C. M. Reinhart and K. S. Rogoff, “Growth in a time of debt,”
American Economic Review, vol. 100, no. 2, pp. 573–78, September
2010. [Online]. Available: http://www.aeaweb.org/articles.php?doi=10.
1257/aer.100.2.573

[6] B. Hofer, A. Riboira, F. Wotawa, R. Abreu, and E. Getzner, “On the
empirical evaluation of fault localization techniques for spreadsheets,”
in Proc. of the 16th Int. Conf. on Fundamental Approaches to Software
Engineering, 2013, pp. 68–82.

[7] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and visualizing
inter-worksheet smells in spreadsheets,” in ICSE, M. Glinz, G. C.
Murphy, and M. Pezzè, Eds. IEEE, 2012, pp. 441–451.

[8] ——, “Detecting code smells in spreadsheet formulas,” in ICSM. IEEE,
2012, pp. 409–418.

[9] J. Cunha, J. P. Fernandes, J. Mendes, and J. S. Hugo Pacheco, “Towards
a Catalog of Spreadsheet Smells,” in The 12th International Conference
on Computational Science and Its Applications, ser. ICCSA’12, vol.
7336. LNCS, 2012, pp. 202–216.

[10] S. Badame and D. Dig, “Refactoring meets spreadsheet formulas,” in
Software Maintenance (ICSM), 2012 28th IEEE International Confer-
ence on, 2012, pp. 399–409.

[11] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. van Gemund, “A practical
evaluation of spectrum-based fault localization,” J. of Systems and Sw.,
vol. 82, no. 11, pp. 1780–1792, 2009.

[12] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, August 1999.

[13] S. Aurigemma and R. R. Panko, “The detection of human spreadsheet
errors by humans versus inspection (auditing) software,” in Proc. of
EuSpRIG Conf., 2010.

[14] J. Cunha, J. P. Fernandes, J. Mendes, P. Martins, and J. Saraiva,
“Smellsheet detective: A tool for detecting bad smells in spreadsheets,”
in Proc. of the 2012 VL/HCC. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 243–244.

[15] F. Chiang and R. J. Miller, “Discovering data quality rules,” The
Proceedings of the VLDB Endowment., vol. 1, pp. 1166–1177, August
2008.

[16] E. F. Codd, “A relational model of data for large shared data banks.”
Commun. ACM, vol. 13, no. 6, pp. 377–387, 1970.

[17] R. Abreu, P. Zoeteweij, and A. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proceedings of the Testing:
Academic and Industrial Conference Practice and Research Techniques
– Mutation (Mutation’07), 2007, pp. 89–98.

[18] A. Jain and R. Dubes, Algorithms for clustering data. Prentice-Hall,
Inc., 1988.

[19] R. Abreu, P. Zoeteweij, and A. van Gemund, “An evaluation of
similarity coefficients for software fault localization,” in Proceedings
of Pacific Rim International Symposium on Dependable Computing
(PRDC’06), 2006, pp. 39–46.

[20] L. Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi, “Extended compre-
hensive study of association measures for fault localization,” Journal of
Software: Evolution and Process, vol. 26, no. 2, pp. 172–219, 2014.

[21] A. da Silva Meyer, A. Garcia, A. de Souza, and C. de Souza,
“Comparison of similarity coefficients used for cluster analysis with
dominant markers in maize (zea mays l.),” Genetics and Molecular
Biology, vol. 27, pp. 83–91, 2004.

[22] B. Hofer, A. Perez, R. Abreu, and F. Wotawa, “On the empirical
evaluation of similarity coefficients for spreadsheets fault localization,”
Automated Software Engineering, pp. 1–28, 2014.

[23] A. Bregar, “Complexity metrics for spreadsheet models,” Proceedings of
the 2004 EuSpRIG Conf., vol. CoRR abs/0802.3895, pp. 85–93, 2004.

[24] K. Hodnigg and R. T. Mittermeir, “Metrics-based spreadsheet visual-
ization: Support for focused maintenance,” CoRR, vol. abs/0809.3009,
2008.

[25] F. Hermans, B. Sedee, M. Pinzger, and A. v. Deursen, “Data clone
detection and visualization in spreadsheets,” in Proceedings of the
2013 International Conference on Software Engineering, ser. ICSE
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 292–301. [Online].
Available: http://dl.acm.org/citation.cfm?id=2486788.2486827

[26] R. Abraham and M. Erwig, “Goaldebug: A spreadsheet debugger
for end users,” in ICSE ’07: Proceedings of the 29th international
conference on Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 251–260.

[27] ——, “Header and unit inference for spreadsheets through spatial
analyses,” Proc. of 2004 VL/HCC, pp. 165–172, Sept. 2004.

[28] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi, “A type
system for statically detecting spreadsheet errors,” in ASE. IEEE CS,
2003, pp. 174–183.

[29] M. Erwig and M. Burnett, “Adding apples and oranges,” 4th Int. Symp.
on Practical Aspects of Declarative Languages, pp. 173–191, 2002.

[30] R. Abreu, A. Riboira, and F. Wotawa, “Debugging Spreadsheets: A
CSP-based Approach,” in Software Reliability Engineering Workshops
(ISSREW), 2012 IEEE 23rd International Symposium on, 2012, pp.
159–164.

[31] R. Abreu, B. Hofer, A. Perez, and F. Wotawa, “Using constraints
to diagnose faulty spreadsheets,” Software Quality Journal, pp. 1–26,
2014.

[32] D. Jannach, A. Baharloo, and D. Williamson, “Toward an integrated
framework for declarative and interactive spreadsheet debugging,” in
Proceedings of the 8th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE 2013), 2013, pp. 117–124.

[33] R. Abraham and M. Erwig, “UCheck: A spreadsheet type checker for
end users.” J. Vis. Lang. Comput., vol. 18, no. 1, pp. 71–95, 2007.

[34] R. R. Panko, “Applying code inspection to spreadsheet testing,” Journal
of Management Information Systems, vol. 16, no. 2, pp. 159–176, Fall
1999.

[35] J. Cunha, M. Erwig, and J. Saraiva, “Automatically inferring classsheet
models from spreadsheets,” in Proceedings of the 2010 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing, ser. VLHCC
’10. IEEE CS, 2010, pp. 93–100.

[36] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “MDSheet: A
Framework for Model-driven Spreadsheet Engineering,” in Proceedings
of the 34rd International Conference on Software Engineering, ser.
ICSE ’12. ACM, 2012, pp. 1412–1415.

[37] R. Abraham and M. Erwig, “Mutation operators for spreadsheets,”
IEEE Trans. Software Eng, vol. 35, no. 1, pp. 94–108, 2009. [Online].
Available: http://dx.doi.org/10.1109/TSE.2008.73

