
Program and Aspect Metrics
for MATLAB?

Pedro Martins1, Paulo Lopes1, João P. Fernandes12,
João Saraiva1, and João M. P. Cardoso2

1 HASLab / INESC TEC, Universidade do Minho, Portugal
{prmartins, plopes, jpaulo, jas}@di.uminho.pt

2 Universidade do Porto, Faculdade de Engenharia, Departamento de Eng.
Informatica, Porto, Portugal

{jmpc}@fe.up.pt

Abstract. In this paper we present the main concepts of a domain-
specific aspect language for specifying cross-cutting concerns of MATLAB
programs, together with a suite of metrics that is capable of assessing
the overall advantage of introducing aspects in the development cycle
of MATLAB software. We present the results of using our own suite to
quantify the advantages of using aspect oriented programming, both in
terms of programming effort and code quality. The results are promising
and show a good potential for aspect oriented programming in MATLAB
while our suite proves to be capable of analyzing the overall characteris-
tics of MATLAB solutions and providing interesting results about them.

Keywords: Aspect Oriented Programming, Matlab, Aspect Metrics

1 Introduction

MATLAB [1] is a high-level, interpreted, mathematically-oriented domain-specific
language which has some key characteristics such as being based on matrix data
types, not requiring variables declaration and including operator overloading.
Combined with function polymorphism and dynamic type specialization these
features, together with the MATLAB environment provided by MathWorks [2],
create an interesting environment to easily model and simulate complex systems.

The fact is that, in MATLAB as in most programming languages, tasks such as
exploiting non-uniform fixed-point representations, monitoring certain variables
or including handlers to observe specific behaviors are extremely cumbersome,
error-prone and tedious tasks. Indeed, each time one of these features is neces-
sary, invasive changes to the original MATLAB program need to be performed.

In addition, as MATLAB allows a higher-level of abstraction than, for ex-
ample, the C programming language, the de facto standard embedded systems

? This work is funded by the ERDF through the Programme COMPETE
and by the Portuguese Government through FCT - Foundation for Sci-
ence and Technology, projects ref. PTDC/EIA/70271/2006 and PTDC/EIA-
CCO/108995/2008. The first and third authors were also supported by FCT grants
BI3-2011/PTDC/EIA/70271/2006 and SFRH/BPD/46987/2008, respectively.

programming language, aspect rules may also be used to specialize the MAT-
LAB input program to different target architectures. These specializations may
include data types, array shapes, and implementations of a given function, and
also contribute to the deterioration of the overall quality of MATLAB code.

The goal of this paper is three fold: firstly, we provide software complexity
metrics for MATLAB programs. These metrics, based on the Halsted’s complexity
metrics [3], provide a quantification of the overall quality of a MATLAB program.
Secondly, we present a set of metrics for an aspect oriented extension of MATLAB,
and thirdly, we also present aspect metrics to quantify the quality of aspect
MATLAB programs. Finally, we present our experimental results of using both
suites of metrics on real MATLAB code and aspect MATLAB programs. We show
the results we obtained by applying our metrics and then we analyze the impact
of using aspects. We also show, using concrete examples, how the quality of a
MATLAB program can see significant increases when an aspects language is used.

In [4], the authors have suggested an aspects language, and a compiler for
it, that is capable of concern modularization and supports specific scientific
computation tasks. Being aware of this Aspects Oriented Programming (AOP)
approach to MATLAB, we use our own aspects language because we are familiar
with it, because it is simple to use and also because it supports the creation
of aspect-oriented versions of MATLAB programs. In this paper we argue that
MATLAB programming can suffer from concerns pollution and that introducing
concerns separation makes programming easier, faster and can help producing
code with more quality. Nevertheless, those improvements are orthogonal to any
aspect oriented approach.

The remainder of this paper is organized as follows. In Section 2 we intro-
duce the MATLAB programming environment and two practical examples. In
Section 3 we introduce our aspect oriented approach, which we use to show how
the examples of the previous section can be improved. In Section 4 we introduce
our suite of metrics to assess the quality of both MATLAB programs and their
aspectualized versions. In Section 5 we show the results of applying the metrics
to a set of MATLAB programs, and in Section 7 we conclude this paper.

2 MATLAB

MATLAB is a high-level matrix-oriented programming language to implement
computationally intensive tasks faster than with traditional programming lan-
guages. The code presented below is an excerpt of a MATLAB function that
implements the Discrete Fourier Transform (function dft custom).

Example of a MATLAB Program:

function [mag] = dft_custom(x, n)
twoPI = 2.0 * pi;
n2 = n/2;
for i = 1:n2

xre(i) = x(i);
end

for i = 0:n-1
arg = twoPI * i / n;

...

There are several characteristics to notice regarding MATLAB code. Firstly, to
provide faster development, data types and shapes of variables are not specified.
In the particular case of this example, from the assignment twoPI = 2 ∗ pi , one
could assume twoPI would be stored as a scalar of double-precision floating-point
type3. Internally, twoPI will actually be stored as a single-element array of type
double.

Secondly, array variable shapes are inferred during program execution. In-
deed, the assignments to variables expose, at runtime, the shape of those vari-
ables. At a certain point of a MATLAB program, assigning arg = twoPI * i / n
will imply that arg is a single-element array, while at another point of the code
assigning arg=[1 2; 3 4; 5 6] will imply that arg now refers to a 2 × 2 matrix.
While these dynamic features speed up program development, they complicate
the translation of MATLAB to non-dynamic languages. For many systems, the
overhead to implement this dynamic behavior is just not acceptable.

In addition to functions, MATLAB offers the possibility of structuring code
in scripts, which very much resemble bash scripts in UNIX (a simple sequence of
instructions), or even Object Oriented Programming (OOP), by defining classes
and applying standard object-oriented design patterns which allow code reuse,
inheritance, encapsulation, and reference behavior. Despite promising, the intro-
duction of OOP in MATLAB is still very recent and has not yet seen a broad
use, whereas functions are part of most existing MATLAB solutions.

Despite some syntactic similarities with C, semantically they are very differ-
ent. For example, the variable whose value is returned by a function, mag in the
case of the previous example, is declared in the function signature itself, instead
of by a primitive such as return, as in C; also, MATLAB functions may explicitly
return more than one value.

Finally, function calling in MATLAB is easy in the sense that all functions
are polymorphic, so a programmer knows that whatever variable he/she applies
to a function, it will always produce a concrete result. Take as an example the
× operator, that can be used to multiply integers, floats and even matrices.

2.1 Tracing in MATLAB

Tracing is a specialized method to obtain execution information of a program,
and it is a technique that is frequently used during the debugging of a program.

A concrete scenario where tracing would be of practical interest is the follow-
ing: in case a function, such as dft custom, is not producing the expected results,
the programmer may want to print all values assigned to some variables when
executing that function for a particular input. Observing all the printed values
may then help in understanding and identifying the coding error.

In order to implement this tracing, one could follow the strategy of planting
printing instructions throughout the original source code, every time an assign-
ment occurs. For dft custom, this strategy would result in the code shown next:

Example of a MATLAB Program with tracing:

3 pi is a constant in MATLAB representing the value π.

function [mag] = dft_custom_tracing(x, n)
twoPI = 2.0 * pi;
disp(’The value of twoPI is:’); disp(twoPI);
n2 = n/2;
disp(’The value of n2 is:’); disp(n2);
for i = 1:n2

xre(i) = x(i);
disp(’The value of xre(i) is:’); disp(xre(i));

end
for i = 0:n-1
arg = twoPI * i / n;
disp(’The value of arg is:’); disp(arg);

end

While this is a strategy that can be manually performed for small-sized pro-
grams, using it for large-sized applications can be a tedious and unproductive
task. Moreover, the code for tracing must also be manually removed from the
final version of the code. In Section 3, we show how tracing can be achieved, in
an elegant and systematic way, using the notion of program aspects.

2.2 Specialization of MATLAB programs

The high level features of MATLAB make it a widely used language for fast
development and for focusing on problem solving instead of on implementation
issues. Type declarations, for example, do not exist in MATLAB.

The high level features, however, make it dificult to generate efficient imple-
mentation code from MATLAB programs. Also, and this is particularly true for
embedded systems, it is commonly necessary to specify a particular MATLAB
implementation to a target system, with hardware or computational restrains.

Let us consider the function dft custom again. Transforming its code to a
program in a different programming language used in target embedded systems
can be challenging due to the dynamic nature of MATLAB’s type system: type
information is not explicit. To generate efficient code we do not only need type
information, but we may also need different versions of the specialized function,
one for each of the target systems. Next, we present the redefinition of dft custom,
where a single fixed point data type is explicitly defined by the programmer.

Example of a MATLAB Program with specialization:

function [mag] = dft_custom_specializing(x, n)
q = quantizer(’fixed’,’floor’, ’wrap’, [32 16]);
twoPI = 2.0 * pi;

twoPI = quantize(q, twoPI);
n2 = n/2;

n2 = quantize(q, n2);
for i = 1:n2
xre(i) = x(i);
xre(i) = quantize(q, xre(i));

end
for i = 0:n-1
arg = twoPI * i / n;
arg = quantize(q, arg);

end

In order to achieve this specialization, we created the MATLAB object q,
defined using quantizer [5], which itself takes a series of arguments that determine
the properties of q. The properties are used throughout the code to specialize the
variables that are used to the data type whose properties are defined in q. In this
case, we aim at targeting a generic system with variables in signed fixed-point
mode (fixed), rounded towards negative infinity (floor), wrap on overflow (wrap)
and has respectively 32 and 16 bits for the word length and for the fraction4.

Regarding the code for specializing dft custom that we presented above, it
is as cumbersome as the code for tracing that we also present above. Indeed, it
follows the same inefficient methodology that we have followed before. Again,
the problem of data type and shape resolution and the generation of different
implementations according to the target domain and architecture can be solved
using aspect-oriented programming (AOP) [6].

As we discuss in the next section, our aspect language can be used to ex-
tend MATLAB programs with transformation and specialization rules that help
the compiler to achieve more efficient code considering a certain target system.
Furthermore, due to the modularity of our solution, the programs we obtain can
easily be adapted to different deployment environments.

3 Aspect MATLAB

As mentioned in the previous section, the flexibility of the MATLAB language
sometimes hinders performance and forces programmers to develop specialized
versions of the same program. Furthermore, when it comes to evaluating spe-
cific features, such as tracing or including handlers to watch certain behaviors,
the programmer is overwhelmed by cumbersome, error-prone and tedious tasks,
which imply invasive code in the original MATLAB program. In [7], we have pro-
posed aspect-oriented features to support triggering conditions and monitoring
variable values, as well as a draft of an aspect language to support these features.
In this paper, we briefly describe our aspect language specification, with primi-
tives to create aspects, specify pointcut expressions, and apply transformations.

The original base program is free of language enhancements and sources re-
main legal MATLAB. The proposed Domain Specific Aspects Language (DSAL)
enables programmers to retain the obvious advantages of a single source pro-
gram representation while allowing the implementations to explore a wide range
of specific solutions at reduced programming and maintenance costs.

The template shown below illustrates the structure of an aspect module; the
same file can have various aspect modules.

The structure of an aspect module:

aspect aspect_name
select: Join Point Capture
apply: Action Description :: execute before | after | around

end

Each aspect has a main constructor: aspect, which initializes the aspect and
gives it a name, and two main sections: select and apply, where the join point

4 Besides these options, MATLAB offers a wide range of possibilities to specialize types,
as shown in [5].

and the action are declared. The section apply is followed by a primitive execute
where, similarly to AspectJ [8], we define if the alteration to the join point occurs
before, after, or around the join point, replacing the original code.

Arrays Variables/Constants Functions

add() read() call()
get() write() function()
size() declare() head()

Table 1: Primitives for join point capture.

The join points capture works in functions, variables and arrays, and the
functions that capture join points are given in Table 1. In the next sections,
we show how concrete aspects may be defined to achieve the same tracing and
specialization results that we have presented in Section 2.

3.1 Tracing

In Section 2.1, we have shown how to manually change the original dft custom
function to perform tracing. This was achieved by inserting obtrusive instructions
in the original function definition. In this section, we present how to concisely
specify such features using our aspect language, as specified in the next aspect.

The structure of an aspect to implement tracing:

aspect variable_tracing()
select: write()
apply(): "disp(’The value of"++name++"is: ’);disp("++name++");"
:: execute after

end

First, we define an aspect with name variable tracing that is responsible for
tracing a variable. The join point write detects when a value is written to a
variable. The apply primitive inserts the new code and the execute primitive
demands its insertion to be after the join point.

Aspects are automatically woven to the original code in order to create a new,
valid MATLAB program that has tracing capabilities, as shown in Section 2.1.
This means that the changes performed by the programmer are easy to realize
in practice and that, after they are used, it is easy to discard them. In fact, the
original MATLAB function remains untouched during the entire process.

3.2 Function Specialization

MATLAB types are not mandatory: the dynamic type system allows the pro-
grammer to create variables and functions without specifying their types. When
targeting MATLAB into a specific target, however, type information is crucial
not only to produce efficient code but also to make the solution compatible with
different processor architectures or other hardware requisites.

Specifying generic functions is easily done with our aspect oriented language
for MATLAB and is very similar to the aspects shown in the previous section for

tracing. The main difference here is that instead of only inserting information
after the variables in order to force them to our custom types, we also have to
define the quantizer object, that represents these types. Therefore, we now need
two aspects: one that is executed only once, which is responsible for creating the
quantizer object, and another that acts every time an assignment occurs, forcing
that assignment into the desired type. These two aspects are presented next:

The structure of aspects to implement specialization:

aspect variable_specialization()
select: head(dft_custom)
apply(): "q = quantizer(’fixed’,’floor’, ’wrap’, [32 16]);"
:: execute after

end
aspect variable_specialization()
select: write()
apply(): name ++ "= quantize(q," ++ name ++ ");"
:: execute after

end

The use of our aspect language makes it easier to specialize a MATLAB
solution, but it also allows fast development and deployment of applications on
heterogeneous environments where traditional programming techniques would
not only be tedious and time-consuming but also prone to generate erros.

4 Metrics for MATLAB Programs

In the previous sections, we introduced both MATLAB and an aspect oriented ex-
tension for it. In this section, we briefly present complexity metrics for MATLAB
and we introduce aspect MATLAB metrics. The idea is to use the complexity
metrics to assess the quality of a MATLAB program and compare it to its aspect
version.

4.1 Complexity Metrics for MATLAB

To assess the complexity of MATLAB programs, we use the lines of code metric
and the Halstead’s complexity metric suite [3].

Lines of Code (LOC): this metric is frequently used in software engineering
to assess the quality of source code. Through it one can predict the effort needed
to create the program and the cost of maintaining it after it is produced.

Halstead’s Complexity: this suite of metrics was developed to measure
a program’s complexity directly from source code. The suite is composed by
six measures that emphasize the complexity of a program: Program Vocabulary,
Program Length, Calculated Program Length, Volume, Difficulty, and Effort.

Despite being easy to calculate, in order to automate the measuring process
we have to define strong rules for identifying the operands and operators [9]. Let
n1, n2, N1, and N2 be the number of distinct operators, the number of distinct
operands, the total number of operators, and the total number of operands. The
metrics that constitute the Halstead suite are, then, defined as follows:

– Program Vocabulary (VOC): n = n1 + n2

– Program Length (PL) : N = N1 + N2

– Calculated Program Length (CPL): N̂ = n1 × log2n1 + n2 × log2n2

– Volume: V = N × log2n

– Difficulty: D =
n1

2
× N2

n2
– Effort: E = D × V

It is important to notice that these results provided by Halstead are not
very useful by themselves, since they do not have units and therefore there is no
qualitative interpretation for them (which is well-known problem of the Halstead
suite). Consequently, we apply them in the basis that they are useful only when
directly comparing different MATLAB sources.

4.2 Metrics for Aspects in MATLAB

Together with the metrics for MATLAB programs, we introduce a suite of met-
rics to help measuring the impact and the benefits of using an aspects oriented
language when programming in MATLAB. For this we adapt the four software
metrics introduced by [10] and [11] to MATLAB.

Concern Diffusion over Lines of Code (CDLOC): this metric counts
the number of transition points, in the source, in and out of of zones where a
concern starts and ends (shadowed zones). The use of this metric requires a shad-
owing process that partitions the code into shadowed areas and non-shadowed
areas, being the code inside the shadowed areas lines of code that implements
a concern. Transition points are points in the code where there is a transition
from a non-shadowed to a shadowed area and vice-versa [11].

Tangling Ratio (TR): this metric gives an estimation about tangling on
the program source code [10]. In the context of MATLAB, we can define it using
the following formula:

Tangling Ratio =
CDLOC program

LOC program

Concern Impact on LOC (CILOC): this metric gives us the ratio be-
tween a original MATLAB source code free of concerns, and the code after being
transformed by our aspect language. This metric allows us to have a first intu-
ition about the impact of using aspects in terms of lines of code, and it is given
by the formula:

Concern Impact LOC =
LOC of concerns free program

LOC of transformed program

The range of the results ranges from zero to one, where one means there are
no concerns on the MATLAB solution and, therefore, there is no advantage in
using an aspect oriented language. As we will see though, this is very uncommon
since concerns are usually an important part of any software solution, being it
MATLAB or not.

Aspectual Bloat (AB): measures the aspects in terms of LOC bloat in the
MATLAB programs [10]. It is calculated by the following formula:

AspectualBloat =
LOC with concerns− LOC without concerns

LOC of aspects

When the result of this metric is 1, it means that the number of lines written
for the aspects plus the number of lines written on the MATLAB program without
aspects is equal to the number of lines of the MATLAB program with aspect
oriented language. With this result, it might seem that there is no advantage in
using an aspects language, but even if the effort, in terms of lines of code was
the same, the use of an aspects oriented language has other advantages, such as
creating a program which is more modular and, consequently, easier to maintain
and update.

5 Metrics Evaluation

With the metrics presented in the previous section, we extended our MATLAB
front-end (which uses the MATLAB to Tom-IR tool [12]) in order to be able
to apply the metrics to both the original MATLAB source code and its aspect
oriented variants.

Figure 1: CDLOC and Tangling Ratio on the manually transformed versions of
dft custom.

5.1 Computing Metrics for Aspect MATLAB

In order to present our metrics we will use the examples provided in Section 2,
consisting of both versions of function dft custom: the one with variable tracing,
as shown in Section 2.1 and the one with variable specialization, as shown in
Section 2.2. Before, we had manually and intrusively written the code responsible
for tracing and specialization. After that, we were able to run the first two
metrics presented in Section 4.2, CDLOC and TR. These two metrics give us an
indication of how many concerns exist in the source code and how much impact
they have in the overall code quality. The results are presented in Figure 1.

We can see that both versions of the function dft custom would benefit from
the usage of an aspect language. Indeed, they have around thirty transition
points in their code (as shown in the left chart of Figure 1), between a concern
and the functional code of the application, and each transition point has the

Figure 2: Concern Impact and Aspectual Bloat on the aspect-oriented versions
of dft custom.

potential to be transformed into an aspect. Here, as it is often the case, we do
have various concerns, and therefore transition points handled by a single aspect
makes their usage even more valuable. Regarding TR (right chart of Figure 1),
both functions also show clear signs of a high degree of code tangling.

A significant amount of concerns in the source code makes it harder to under-
stand and maintain. The fact that the metrics achieved such expressive results
for dft custom shows a good potential for aspects to be applied: they are partic-
ularly good in modularizing and aiding on implementing such features.

Figure 3: Metrics for dft custom with tracing and specialization, implemented
with and without our aspects language.

Our next step was to write, using our aspect language, modules that auto-
matically generate the traced and specialized versions. These aspects are similar
to the ones presented in Section 3, and make it not only simple and easy to ob-
tain the different dft custom functions, but also to backtrack any transformation
in case we want to revert their application. In fact, the traditional method to

backtrack a manually transformed function is to manually remove all the code
that implements the aspect functionality.

In Figure 2 we show, through the use of metrics CILOC and AB the actual
effect that using AOP had on function dft custom.

The first metric results, presented in the left chart of Figure 2, show the
relation between the lines on a version of the code without concerns and on the
same code after being transformed by our aspect language. This shows how less
effort is needed by using an aspect language. In this case, and particularly on the
case with tracing, the effect was noticeable: we were able to inject a significant
number of lines of code only through the use of a single aspect.

The second metric results, shown in the right chart of Figure 2, seem promis-
ing too. This metric shows how much aspect code we had to write to change the
original source code. The observed results indicate that the programming effort
was greatly reduced by using aspects.

5.2 Computing MATLAB Metrics

So far, we have shown that the use of aspects can help on implementing new
features while minimizing the traditional negative impact of extending source
code. In this section we try to assess whether there are quality improvements
in the original program, with added aspects, when compared to the manually
transformed versions. For this, we compute the metrics presented in Section 4.1
on all versions of the dft custom function, whose results are presented in Figure 3.

Figure 4: Aspect metrics in a set of five MATLAB functions.

This metrics suite seems to provide strong evidence that using aspects in-
creases the overall code quality. The version with aspects is always clearer,
shorter and easier to read. Some results actually show a large improvement,
such as the metric Difficulty, that shows improvements in the order of 89% and

VOC, that shows gaps in the order of 88%. Other metrics show smaller advan-
tages, such as CPL that shows improvements in the order of 8%. Still, the overall
analysis of all results leads us to believe that using aspects in MATLAB programs
can create programs with better quality.

5.3 Quality Analysis in Real-Life Applications

To further test the impact of our aspects language, we used a set of five func-
tions taken randomly from MATLAB’s File Exchange [13]. This website is a
community-based repository for MATLAB functions, applications and scripts,
where users can upload their implementations and download programs.

For each application, we took one source code file (very commonly, a MATLAB
solution is made out of various source files) while being careful to pick applica-
tions from the groups with best rating or with the highest number of downloads
or comments. We did so to ensure that our set is actually representative of the
code usually found in MATLAB.

Next, we manually inserted new features in the code in order to specialize
it and to trace its variables, similarly to the dft custom examples presented in
Section 2. We also implemented these features using our aspects language, i.e.,
with aspects that transform the MATLAB sources into new versions that support
tracing and specialization.

In Figure 4 we show the aspect metrics applied to this set of functions. The
results are similar to the ones found for dft custom: using aspects reduces the
effort of implementing specialized versions as seen, for example, on the tangled
concerns on the code. In Figure 5 we show the metrics used for MATLAB quality
assessment. Again, the overall results prove that using aspects decreases the size
of the solution while keeping the code easier to maintain and reducing the effort
to understanding it. Some metrics are particularly positive, with improvements of
around 90%, from the traditional implementation to the aspects oriented version,
as for PL on the quadmin function with tracing. The Effort metric applied to
the same function also shows results on the order of 64%. The charts in Figure 5
confirm the overall promising results of our aspect oriented approach.

5.4 Quality Analysis of the Matlab program IMPACTED

In order to further conrm the results obtained so far, we have applied our metrics
suite to the MATLAB program IMPACTED [14–16]. This program focuses on
hazard avoidance techniques for controlled landings and has been the object of
several studies. It represents a mature, highly complex solution composed by
various functions and gives us a good environment for testing MATLAB code
regarding both code quality and the potential for AOP introduction.

We have chosen a subset of this package, representing approximately 270
lines of code obtained through profiling, which gave us the hotspot in terms of
the execution, represented by ten functions that represent the most important
computations together and highest overheads. We did so because typically it
is not necessary to separate concerns on all the elements of a solution. Some
elements represent auxiliary functions, simpler and easier to control. The core
computations, on the other hand, represent the core functionalities and therefore
the parts where errors are more crucial, and where code control is harder.

Figure 5: Metrics results for each function with tracing and specialization, im-
plemented with and without aspects.

We followed the same analysis strategy we showed throughout Section 5, first
analyzing the potential for aspects implementation, and secondly analyzing the
changes on the final solutions improved with tracing and specialization when

Figure 6: Aspect metrics in IMPACTED.

Figure 7: Metrics for IMPACTED with tracing and specialization, implemented
with and without our aspects language.

aspects were added to the programming cycle. Figure 6 and Figure 7 show the
results of these two analysis, respectively.

The results show an overall improvement in code quality, increasing as much
as 21% in LOC and PL. The effort to understand the code shows improvements
of 26% and 52% for the versions of IMPACTED where tracing and specializing
were introduced. On other charts we see worse resuls, such as the CPL that
shows no improvements at all in the version with tracing and only 37% for the
specialized version. A metric in particular, the Vocabulary, shows an increase in
the implementing effort. This might be due the fact that, by introducing a new
language, we are forcing the programmer to learn a new set of constructors and

primitives. We do not see this as a pitfall though, as it is a one of task and the
overall improvements in all the other metrics prove it is worth it.

6 Implementation

The metrics presented are implemented in our MATLAB front-end. This font-end
includes parsers and construction of the abstract syntax tree for MATLAB (with
the MATLAB to Tom-IR tool [12]) and for the MATLAB aspect language.

This front-end was developed using advanced language engineering tech-
niques, like generalised (top-down) parsing (using the ANTLR parser generator
[17]), strategic programming [18–20] (implemented with the TOM system [21]),
attribute grammars [22, 23] (implemented in the Lrc system [24]), and formal
program calculation techniques to reason about our implementions [25, 26]. By
using these we can easily define tree-traversal algorithms, that we heavily use to
weave the abstract data-types of both the aspects and the MATLAB code.

These techniques allowed us to implement all metrics presented in this paper
in a concise and generic way. That is, they are independent of the abstract tree.
As a consequence, new metrics can be easily added to our metric suite.

7 Conclusion

In this paper we presented software metrics for assessing the software complexity
of both standard MATLAB programs and aspect oriented MATLAB programs.

We adapted a set of AOP metrics to the Aspect MATLAB realm, by imple-
menting them in our MATLAB front-end, and used them to assess the complexity
of MATLAB programs when compared to their AOP equivalents. We did so by
applying our suite first to a set of widely used MATLAB functions and later to
a fully developed MATLAB program, consisting of many MATLAB functions.

Our preliminary results are promising and show that aspect oriented pro-
gramming in MATLAB improves the quality of programs. Both the MATLAB
metrics and the aspect metrics are implemented in our (Aspect) MATLAB fron-
tend.

References

1. MATLAB: version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts
(2010)

2. MathWorks: Front page. http://www.mathworks.com [Accessed in February 2012].
3. Halstead, M.H.: Elements of Software Science (Operating and programming sys-

tems series). Elsevier Science Inc., New York, NY, USA (1977)
4. Aslam, T., Doherty, J., Dubrau, A., Hendren, L.: Aspectmatlab: an aspect-oriented

scientific programming language. In: Proceedings of the 9th International Confer-
ence on Aspect-Oriented Software Development (AOSD), New York, NY, USA,
ACM (2010) 181–192

5. MathWorks: R2012a documentation - fixed-point toolbox. http://
www.mathworks.com/help/toolbox/fixedpoint/ref/quantizer.html [Accessed
in February 2012].

6. Cardoso, J., Fernandes, J., Monteiro, M.: Adding aspect-oriented features to mat-
lab. In: workshop on Software Engineering Properties of Languages and Aspect
Technologies (SPLAT! 2006). (2006)

7. Cardoso, J., Diniz, P., Monteiro, M.P., Fernandes, J.M., Saraiva, J.: A domain-
specific aspect language for transforming MATLAB programs. In: Fifth Workshop
on Domain-Specific Aspect Languages (DSAL). (March 2010)

8. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectj. In: Proceedings of the 15th European Conference on Object-
Oriented Programming (ECOOP), London, UK, Springer-Verlag (2001) 327–353

9. Peckhan, J., Lloyd, S.J.: Practicing Software Engineering in 21st century. IRM
Press (2003)

10. Lopes, C.V.: D: A Language Framework for Distributed Programming. PhD thesis,
College of Computer Science, Northeastern University (1997)

11. Sant’anna, C., Garcia, A., Chavez, C., Lucena, C., v. von Staa, A.: On the reuse
and maintenance of aspect-oriented software: An assessment framework. In: Pro-
ceedings XVII Brazilian Symposium on Software Engineering (SBES). (2003)

12. Nobre, R., Cardoso, J.M.P., Diniz, P.C.: Leveraging type knowledge for efficient
matlab to c translation. In: 15th Workshop on Compilers for Parallel Computing
(CPC). (2010)

13. MathWorks: Matlab central - file exchange. http://www.mathworks.com/
matlabcentral/fileexchange [Accessed in February 2012].

14. Ribeiro, J.D.S.R.G.J.R., Pais, T.C.: Hazard avoidance developments for plane-
tary exploration. 7th International ESA Conference on Guidance, Navigation and
Control Systems (2008)

15. Reynaud, S., Drieux, M., Bourdarias, C., Philippe, C., Pham, B.v., Transportation,
A.S.: Science driven autonomous navigation for safe planetary pin-point landing
1. Context (2009) 1–10

16. Pais, T., Ribeiro, R.A.: Contributions to dynamic multicriteria decision mak-
ing models. Proceedings of the International Fuzzy Systems Association World
Congress and European Society for Fuzzy logic and technology Conference (IFSA-
EUSFLAT) (2009) : 719–724

17. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.
First edn. Pragmatic Programmers. Pragmatic Bookshelf (2007)

18. Visser, J., Saraiva, J.: Tutorial on strategic programming across programming
paradigms. In: 8th Brazilian Symposium on Programming Languages (SBLP).
(2004)

19. Balland, E., Moreau, P.E., Reilles, A.: Rewriting strategies in java. Electron. Notes
Theor. Comput. Sci. 219 (2008) 97–111

20. Lämmel, R., Visser, J.: Program transformation with stratego/xt: Rules, strategies,
tools, and systems in strategoxt-0.9. In et al., L., ed.: Domain-Speciffic Program
Generation. LNCS, Springer-Verlag (2003)

21. Balland, E., Brauner, P., Kopetz, R., Moreau, P.E., Reilles, A.: Tom: Piggybacking
rewriting on java. In: Term Rewriting and Applications. LNCS, Springer-Verlag
(2007)

22. Knuth, D.E.: Semantics of Context-free Languages. Mathematical Systems Theory
2(2) (1968) 127–145 Correction: Mathematical Systems Theory 5, 1, pp. 95-96
(March 1971).

23. Saraiva, J., Swierstra, D.: Generating Spreadsheet-like Tools from Strong Attribute
Grammars. In Pfenning, F., Smaradakis, Y., eds.: ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component Engineering (GPCE).
Volume 2830 of LNCS., Springer-Verlag (2003) 307–323

24. Kuiper, M., Saraiva, J.: Lrc - A Generator for Incremental Language-Oriented
Tools. In Koskimies, K., ed.: 7th International Conference on Compiler Construc-
tion (CC/ETAPS). Volume 1383 of LNCS., Springer-Verlag (1998) 298–301

25. Fernandes, J.P., Pardo, A., Saraiva, J.: A shortcut fusion rule for circular program
calculation. In: ACM SIGPLAN Haskell Workshop. Haskell’07, New York, NY,
USA, ACM (2007) 95–106

26. Pardo, A., Fernandes, J.P., Saraiva, J.: Shortcut fusion rules for the derivation
of circular and higher-order programs. Higher-Order and Symbolic Computation
(2011) Springer, 1–35

