
Zipper-based Modular and Deforested
Computations

Pedro Martins1, João P. Fernandes1,2, and João Saraiva1

1 High-Assurance Software Laboratory (HASLAB/INESC TEC),
Universidade do Minho, Portugal

2 Reliable and Secure Computation Group ((rel)ease),
Universidade da Beira Interior, Portugal

{prmartins@di.uminho.pt,jpf@di.ubi.pt,jas@di.uminho.pt}

Abstract. In this paper we present a methodology to implement mul-
tiple traversal algorithms in a functional programming setting. The im-
plementations we obtain s of highly modular and intermediate structure
free programs, that rely on the concept of functional zippers to navigate
on data structures.
Even though our methodology is developed and presented under Haskell,
a lazy functional language, we do not make essential use of laziness.
This is an essential difference with respect to other attribute grammar
embeddings. This also means that an approach similar to ours can be
followed in a strict functional setting such as Ocaml, for example.
In the paper, our technique is applied to a significant number of prob-
lems that are well-known to the functional programming community,
demonstrating its practical interest.

Keywords: Deforested Computation, Generic Programming, Functional
Programming

1 Introduction

Functional programs are often constructed by gluing together smaller compo-
nents, using intermediate data structures to convey information between com-
ponents. These data structures are constructed in one component and later con-
sumed in another one, but never appear in the result of the whole program.
This compositional style of programming has many advantages for clarity and
modularity, but gives rise to a maintenance problem due to the extra data that
must be created and consumed. The usual solution is to remove intermediate
data structures by combining smaller components into larger ones, thereby ruin-
ing modularity. In this paper we develop a technique for avoiding this tradeoff:
we implement modular functional programs without defining intermediate data
structures.

Consider the problem of transforming a binary leaf tree t1 into a new tree
t2 with the exact same shape as t1, but with all the leaves containing the min-
imum value of t1. This problem is widely known as repmin [1], and is often

2 First Class Attribute Grammars for Modular and Deforested Computation

used to illustrate important aspects of modern functional languages [2–4]. In
this paper, repmin is also used as a first running example, and we start by pre-
senting different solutions for it. In order to solve repmin, we start by defining
a representation for binary leaf trees:

data Tree = Leaf Int | Fork Tree Tree

In a strict, purely functional setting, solving this problem requires a two
traversal strategy. First, we need to traverse the input tree in order to compute
its minimum value:

tmin : : Tree −> Int
tmin (Leaf n) = n
tmin (Fork l r) = min (tmin l) (tmin r)

Having traversed the input tree to compute its minimum value, we need to
traverse that tree again. We need to replace all its leaf values by the minimum
value:

r e p l a c e : : Tree −> Int −> Tree
r e p l a c e (Leaf) m = Leaf m
r e p l a c e (Fork l r) m = Fork (r e p l a c e (l ,m))

(r e p l a c e (r ,m))

In order to solve repmin, we now only need to combine functions tmin and
replace appropriately:

trans form : : Tree −> Tree
trans form t = r e p l a c e t (tmin t)

There are many advantages in structuring our programs in this modular way.
Considered in isolation, functions tmin and replace are very clear, simple, they
are easy to write and to understand, so they have a great potential for reuse.
Furthermore, each function can be focused in performing a single task, rather
than attempting to do many things at the same time.

In this particular solution, given the simplicity of repmin, the input tree t
serves as input to both functions tmin and replace. In general, however, modu-
lar programs are given by definitions such as prog = f.g, where prog :: a → c,
g :: a → b and f :: b → c. This means that these programs use an intermedi-
ate structure, of type b, that needs to be more informative than the input one,
of type a. This fact forces the programmer to define and maintain new data
structures which are constructed as the program executes. The construction of
these structures that never appear in the result of the whole program adds over-
head that makes maintenance hugely difficult, which gets worse as the program
increases both in size and in complexity.

In the above solution, it is also the case that the scheduling of computa-
tions was left to the programmer. Indeed, in order to implement transform, we
realized that the minimum of the input tree needs to be computed before the
replacement is possible. Although the scheduling in this case is trivial, for more
realistic problems, the scheduling of computations may not be a simple task. For
example, the optimal pretty printing algorithm presented in [5] is implemented

Zipper-based Modular and Deforested Computations 3

by four traversal functions, whose scheduling is extremely complex. Moreover,
those four functions rely on three (user-defined) gluing intermediate structures
to convey information between the different traversals.

In a lazy functional setting such as Haskell an alternative solution to repmin
can be formulated. In his original paper, [1] showed how to derive such a solution
from the two traversal solution seen before. He derives the program:

repmin : : Tree −> Int −> (Tree , Int)
repmin (Leaf n) m = (Leaf m, n)
repmin (Fork l r) m = (Fork t1 t2 , min m1 m2)

where (t1 , m1) = repmin l m
(t2 , m2) = repmin r m

transform : : Tree −> Tree
trans form t = nt

where (nt , m) = repmin t m

This program is circular: we can see that, in the definition of the transform
function, m is both an argument and a result of the repmin call. Although this
definition seems to induce both a cycle and non-termination of this program, the
fact is that, in a lazy setting, the lazy evaluation machinery is able to determine,
at runtime, the right order to evaluate it. In this type of programs, the work
associated with the scheduling of computations is, therefore, transferred from
the programmer to the lazy evaluation machinery.

We may also notice that the circular version of transform does not construct
or use any intermediate data structure, and this is a characteristic of all circular
programs: since they define a single function to perform all the work (repmin,
in the example), the definition of intermediate data structures to glue different
functions loses its purpose. In fact, circular programming may be considered an
advanced technique for intermediate structure deforestation [3].

In a circular program, the definition of a single function, on the other hand,
forces us to encode together all the variables used in the program. Indeed, if
we needed to use more arguments or to produce more results in our example,
these would all have to be defined in repmin. As a consequence, the definition of
such a function needs to be concerned with using and computing many different
things. In this sense, we observe that circular programs are not modular.

Circular programs are also known to be difficult to write and to understand
and even for experienced functional programmers, it is not hard to define a real
circular program, that is, a program that does not terminate. The execution of
such programs is, furthermore, restricted to a lazy execution setting, since such
a setting is essential to schedule circular definitions. This means that we are
not able to execute the latter version of transform in a strict language such as
Ocaml, for example.

In summary, we notice some characteristics of these approaches: the first ver-
sion of transform is highly modular and its execution is not restricted to a lazy
setting, but relies on gluing data types and function scheduling, whereas the
second one is free of intermediate structures and requires no explicit scheduling
by the programmer but is hard and ”non-natural” to write such circular pro-

4 First Class Attribute Grammars for Modular and Deforested Computation

grams, and even for an advanced lazy functional programmer it is hard to write
a program which is not completely circular, i.e., which terminates.

In this paper, we develop a framework for implementing multiple traversal
algorithms in a functional setting. Programs in our framework combine the best
of the two transform solutions: they are modular, intermediate structure free
and do not require explicit scheduling by the programmer. This is achieved
by thinking of our programs in terms of Attribute Grammars (AGs), i.e., by
implementing AGs as first class elements in our language. In this sense, our
work may also be thought of as an AG embedding.

In the literature, one may find other approaches with similar goals; [2, 4] are
two notable examples. An essential difference with respect to these approaches is
that our framework does not make essential use of laziness, so that it can easily
be implemented in a strict setting such as Ocaml. A more detailed comparison
to related work is presented in section 6.

The framework we propose relies heavily on the concept of functional zippers,
originally proposed by [6]. As we will see later, our use of functional zippers is
such that they provide an elegant and efficient mechanism for navigating on tree
structures, but also to hide that navigation.

In a previous work [7], we have presented an embedding of Attribute Gram-
mars in a functional setting, together with modern AG extensions, and shown
how these can be used to implement the semantics of programming languages.
In this work, we show how such setting can also be useful as an alternative to
traditional implementations on a functional setting, by creating programs that
are more modular and structured.

This paper is organized as follows. In section 2, we review the standard concept
of functional zippers. In section 3, we show how standard zippers can be used
to express a modular attribute grammar to solve the repmin problem. Our
approach is then used in sections 4 to 5 to express attribute grammar solutions to
programming problems more realistic than repmin, as well as a generic solution
to repmin. In 6 we describe works that relate to ours, and finally in section 7
we draw our conclusions.

2 The zipper

The zipper data structure was originally conceived by Huet [6] to solve the prob-
lem of representing a tree together with a subtree that is the focus of attention,
where that focus may move left, right, up or down the tree.

In our work we have used the generic zipper library of [8]. It works for both
homogeneous and heterogeneous datatypes, and data-types for which an instance
of the Data and Typeable type classes [9] are available can be traversed.

In order to introduce the concept of zipper, we consider again the represen-
tation for binary leaf trees in Haskell :

data Tree = Leaf Int | Fork Tree Tree

and one of its possible instances with its visual representation:

Zipper-based Modular and Deforested Computations 5

t r e e = Fork (Leaf 1)
(Fork (Leaf 4)

(Leaf 7))
1

4 7

We may notice that, in particular, each of tree’s subtree occupies a certain
location in tree, if we consider it as a whole. That location may be represented
by the subtree under consideration and by the rest of the tree, which is viewed
as the context of that subtree. For instance, the context of Leaf 4 in tree is

Fork (Leaf 1)
(Fork focus

(Leaf 7))

where focus marks a hole which corresponds exactly to the spot where Leaf 4
appears in tree. One of the possible ways to represent this context is as a path
from the top of the tree to the hole. To reach Leaf 4 in tree, we need to go
down the right branch and then down the left one.

Using this idea, we can easily reach Leaf 4 in tree using the generic zippers
provided by [8]. We start by encapsulating tree into a zipper:

a = toZipper t r e e

where a has the type a :: Zipper Tree. With this, it is simple to traverse a and
the position of the tree where Leaf 4 is:

b = let d = fromJust (down a)
in fromJust (down ’ d)

In this operation, we go to the rightmost child using down, and then to the
leftmost child using down′. Since all the functions of this library wrap the result
inside a data type to make them total, we also have to unwrap the result every
time a function is called. We do so simply by using the function fromJust3.

The result of this operation has the type b :: ZipperTree, meaning that b is
a zipper like a, with the difference of having a different focus. With this said, if
we ask for the focus of b, using the function getHole:

let f o cu s = getHole b : : Maybe Tree
focus = Leaf 4

In this formalism, the semantics are dependent on information that is im-
mediately above or below of a certain tree position, concept which is directly
provided by zippers and the associated navigation functions.

The zipper data structure provides an elegant and efficient way of manipu-
lating locations inside a data structure. Zippers are particularly useful for per-
forming incremental edits on tree structures. Zippers have already been used in
the implementation of filesystems [10] and window managers [11], but they are

3 We are not really checking for totality, otherwise we would have to test each function
call against a set of possible results. For simplicity we are just assuming the function
produced a result and we are directly unwrapping it with fromJust.

6 First Class Attribute Grammars for Modular and Deforested Computation

applicable anytime there is a focal point for edits. In the implementation of a
filesystem, the current working directory is the focal point of attention, and in
a window manager it is the window with focus.

In the next section, we show how we abstract this library of zippers by cre-
ating a set of constructors that resemble more closely the traditional formalism
to implement AGs.

2.1 Abstracting the Generic Zippers

The generic zipper library presented on the previous section provides a useful set
of functions to navigate throughout data types. However, it is our intention to
abstract as much as possible from this library and create a setting where Haskell
constructors are as similar as possible to the typical primitives used in Attribute
Grammars. In this section we present a set of functions that allows the easy
navigation of data types, that does not require further testings for the user (for
example, we abstract over totality checks) and leverages the implementation to
one much closer to AGs.

Let us consider a concrete data type to represent programs in an Algol 68-like
language restricted to expressing declarations and uses of variables. Programs
in this language consist of instruction blocks, where each instruction declares a
variable, uses a variable or defines a nested instruction block. A small example
of a program in this language is

p = [dec l ’ y ; [dec l ’ w; use ’ x ;] use ’ y ;]

In order to represent programs in the Algol 68 language, we define the follow-
ing Haskell data-type. This data-type will be used, in Section 4, to implement
a semantic analyzer for that language:

data Root = Root I t s
deriving (Typeable , Data)

data I t s = ConsIts I t I t s | N i l I t s
deriving (Typeable , Data)

data I t = Decl String | Use String | Block I t s
deriving (Typeable , Data)

In this representation, p is defined as:

p = Root (ConsIts (Decl ”y”)
(ConsIts (Block (ConsIts (Decl ”w”)

(ConsIts (Use ”x”) N i l I t s)))
(ConsIts (Use ”y”) N i l I t s)))

Our goal now is to navigate on elements of type P in the same way that we
traversed elements of type Tree, in Section 2. Using our Attribute Grammar-
based approach, instead of writing concrete location navigation functions, the
user is only required to declare the data types to traverse as deriving from the
Data and Typeable type classes, which are provided as part of GHC’s4 libraries.

4 The Glasgow Haskell Compiler, http://www.haskell.org/ghc/

Zipper-based Modular and Deforested Computations 7

This means we will be immediately able to navigate through the data types
Root, Its and It using the zipper-provided functions.

Suppose that we want to traverse the previous Algol phrase to the identifier
of the variable that is being used in the nested block of p. The first thing to do
is to get p inside a zipper:

g1 : : Z ipper Root
g1 = toZipper (Root p)

In order to reach the desired nested block on the program p, we now need to
go down from the root location created in g1. We do this using function .$, as
follows:

g2 = g . $1 : : Zipper Root

Data type locations do not need any information about the types of their
children, but neither does the user. Because we are embedding Algol in Haskell,
and Haskell has a strong type system, type correctness is always necessarily
enforced meaning a phrase of Algol is always type-valid. And because the zipper
does not need any contextual information, regarding what is above or below a
given position, this information is abstracted from the user as well. Of course, one
must be aware of the position of a tree where certain computation needs to be
performed, but our setting adds an increased level of abstraction comparing with
traditional Haskell programs while retaining the same core language features
such as type safety or referential transparency.

Retuning to our example, the value held by the location g2 is one position
below the initial focus on the zipper, which was Root. As expected, g2 yields:

g2 = (ConsIts (Decl ”y”)
(ConsIts (Block (ConsIts (Decl ”w”)

(ConsIts (Use ”x”) N i l I t s)))
(ConsIts (Use ”y”) N i l I t s)))

We need to continue going down on p, if we want to edit the declaration of
the variable ”w”:

g1 = g2 . $2

With g3:

g1 = ConsIts (Block (ConsIts (Decl ”w”)
(ConsIts (Use ”x”) N i l I t s)))

(ConsIts (Use ”y”) N i l I t s)

Notice that function .$ is a generic function, that applies to locations on any
data type that derives from Typeable and Data. It is not even the case that .$
applies only to data-types that have the same number of children. What is more,
Root has a single data-type child, Its, and that Its may have two children, It
and Its. When .$ is applied with a constructor that has more than one child, it
will go down to the user-defined one. This is precisely how the original Attribute
Grammars formalism works: semantics on a tree site depende on the parent if

8 First Class Attribute Grammars for Modular and Deforested Computation

they are inherited, or on specific children that in our setting are numerically
defined.

We can see that the declaration of variable ”w” occurs in the first (left) child
of the current location. This means that if we apply function .$1 to g3 we will
immediately go to the correct child:

g4 = g1 . $1

Location g4 holds, as expected, the nested block of instructions that occurs
both in p, and in g3:

g4 = Block (ConsIts (Decl ”w”)
(ConsIts (Use ”x”) N i l I t s))

We continue our navigation performing another go down step to access the
instructions in the nested block on g4,

g4 = g4 . $1

obtaining:

g4 = ConsIts (Decl ”w”)
(ConsIts (Use ”x”) N i l I t s)

An important remark is that in this block (g5) we declare a variable ”w”
but use a variable ”x”; intuitively, the identifiers of these two variables should
probably match. The zipper library we use provides primitives to change the
parts of a tree. In this example, we could easily correct the wrong assignment
of ”x” (or declaration of ”w”). We do not worry about this as this is not a
traditional behavior of Attribute Grammars.

Attribute Grammars as a formalism is extremely suitable to perform tree
transformations, but such operations are typically implemented by designing a
set of attributes that traverses the tree and whose result is a new, refactored one.
With this in mind, using AGs we would not change ou zipper, we would instead
create a new, corrected tree (as we do in Sections 3 and 5). Nevertheless, such
operation is possible and the functions provided in the generic zipper library we
use are compatible with our abstraction of tree navigation functions with (.$),
serving as a reminder of the adaptability of our approach.

In the next sections, we show how the generic zipper framework introduced
in this section can be used to solve different programming problems.

3 The repmin

In [1], it was originally proposed to solve repmin using a circular program, i.e.,
a program where, in the same function call, one of its results is at the same
time on of its arguments. With his work, Bird showed that any algorithm that
performs multiple traversals over the same data structure can be expressed in a
lazy language as a single traversal circular program.

Furthermore, using circular programming, the programmer does not have to
concern himself with the definition and the scheduling of the different traver-
sal functions and, because there is a single traversal functions, neither does the

Zipper-based Modular and Deforested Computations 9

programmer have to define intermediate gluing data structures to convey infor-
mation between traversals.

Writing circular programs, however, forces the programmer to encode to-
gether all the arguments and results that are used in the circular call. When
functions have many arguments as well as many results, it is often preferable
to express multiple traversal algorithms in terms of attribute grammars (AGs),
that have been proved to be strongly related to circular programs [12, 13]. The
AG programming paradigm does not force the programmer to encode all the
aspects together.

Returning to our example, in [4], the authors identified three components for
solving repmin: computing the minimal value, passing down the minimal value
from the root to the leaves and constructing the resulting tree. In this section,
we review the Attribute Grammar for repmin that was introduced by [14], and
show how each of the three components identified by [4] in that grammar can
be embedded in Haskell using our approach.

The attribute grammar for repmin starts by defining the underlying data
structure, i.e., binary leaf trees. The attribute grammar fragments presented
in this section follow the standard AG notation of [14]. In this notation, we
straightforwardly use the Tree datatype from Section 2.

Having defined the structure, we need to define functionality. We start by
reviewing the AG component that computes the minimal value of a tree:

SYN Tree [smin : Int]
SEM Tree | Leaf l h s . smin = @v

| Fork l h s . smin = @le f t . smin
‘min ‘

@right . smin

This component declares, using the SY N keyword, that elements of type
Tree synthesize an attribute smin of type Int. Then, a SEM sentence defines
how smin is computed: when the current tree is a leaf, clearly its minimal value
is the leaf value itself; when it is the fork of two other trees (the left and the
right subtrees), we compute the minimal values of each subtree (i.e., their smin
attribute), and then their minimal value (function min). In this notation, lhs
refers to the left-hand side symbol of the production and @ prefixes a reference
to a field.

Our zipper-based embedding of this component is defined as:

smin : : Zipper Root −> Int
smin t = case con s t ruc to r t of

”Root” −> smin (t . $1)
” Leaf ” −> lexeme t
”Fork” −> min (smin (t . $1)) (smin (t . $2))

Function constructor, given in Section 3.1, maps any element to a textual
representation of its constructor. Function lexeme is also defined in Section 3.1
to compute the concrete value in any leaf of a tree.

We can see that the embedding of smin that we obtain very much directly
follows from its AG specification.

10 First Class Attribute Grammars for Modular and Deforested Computation

Having implemented the first of the three components that solve repmin, we
now consider the remaining two. We start by implementing the construction of
the result of repmin, a tree with all leaves being the minimum of the original
one.

SYN Tree [s r e s : Tree]
SEM Tree | Leaf l h s . s r e s = Leaf @lhs . i v a l

| Fork l h s . s r e s = Fork @le f t . s r e s @right . s r e s

We are now defining an attribute sres, again synthesized by elements of type
Tree. This attribute definition may again be mapped to our setting very easily.
We obtain the following implementation:

s r e s : : Zipper Root −> Tree
s r e s t = case con s t ruc to r t of

”Root” −> s r e s (t . $1)
” Leaf ” −> Leaf (i v a l t)
”Fork” −> Fork (s r e s (t . $1)) (s r e s (t . $2))

The implementation of sres places in each leaf of a tree the value of the
ival attribute. This value corresponds to the minimal value of the global tree,
that still needs to be passed down to all the nodes in the tree. This corresponds
exactly to the third component that we still need to implement. In order to bind
the minimal value being computed (attribute smin) with the minimal value that
is passed down through the tree (attribute ival), it is common, in the AG setting,
to add a new data-type definition,

DATA Root | Root t r e e : Tree

and a new semantic rule,

SEM Root | Root t r e e . i v a l = @tree . smin

Passing down ival then becomes:

INH Tree [i v a l : Int]
SEM Tree | Fork l e f t . i v a l = @lhs . i v a l

r i g h t . i v a l = @lhs . i v a l

In our setting, we closely follow this approach and always introduce a new
data type that marks the topmost position of the tree, in this case, ”Root”.

When the current location corresponds to the top one, we have to define the
values of smin to ival in this particular position. In our setting, we then define
the attribute ival as follows (we use the location navigation function parent to
access the parent of a tree location):

i v a l : : Zipper Root −> Int
i v a l t = case con s t ruc to r t of

”Root” −> smin t
” Leaf ” −> i v a l (parent t)
”Fork” −> i v a l (parent t)

Zipper-based Modular and Deforested Computations 11

Notice that we do not explicitly distinguish between inherited and synthe-
sized attributes. Like in modern attribute grammar systems [14, 15], inherited
attributes, such as ival, correspond to attributes that are defined in parent nodes.

Having defined the three components that allow us to solve the repmin prob-
lem, we may now define a semantic function that takes a tree and produces a
repmined tree, using these components:

semant ics : : Root −> Tree
semant ics t = r e p l a c e (toZipper t)

Regarding this implementation, we may notice that it has the best properties
of the two transform solutions presented in section 1. First, it is modular, since
the global computational effort has been separated into several components, and
does not rely on laziness, like the first transform implementation. Second, it
constructs no intermediate structure and it requires no explicit scheduling: notice
that smin, replace and ival were defined with no particular focus on the order
they need to be computed.

In this section, we have presented a solution to the repmin problem in terms
of an attribute grammar. Our solution is expressed in Haskell and closely follows
common attribute grammar notation. We showed that we can easily intermingle
separate concerns with the implementation’s basic functionality, which itself has
been split into different components. Therefore, we believe that our framework
is very appropriate for static aspect oriented programming [16] in a functional
language.

3.1 Boilerplate Code

Our goal with this paper was to address concerns of the expression problem
without relying in an opaque and possibly complex pre-processor. A disadvantage
of this approach is that some code that may be considered boilerplate code needs
to be manually defined. Function constructor, that we have used throughout
the paper to map an element to a textual representation of its constructor, is a
function clearly in this set: it goes down all the possible constructors and tries
to match them with a given element.

con s t ruc to r : : Zipper Root −> String
con s t ruc to r a = case (getHole a : : Maybe Tree) of

Just (Fork) −> ”Fork”
Just (Leaf) −> ” Leaf ”

otherwise −> case (getHole a : : Maybe Root) of
Just (Root) −> ”Root”

For each individual argument, constructor matches an element wrapped up
in a zipper against the constructors of the data-type Tree. In this example,
constructor matches an element against the constructors Fork, Leaf and Root,
creating a String representation of them.

The other function that we have used and that could easily be given by a
pre-processor is function lexeme, that computes the value in any leaf of a tree.

12 First Class Attribute Grammars for Modular and Deforested Computation

In the leaves of our running example’s trees, we only have elements of on one
data constructor, Leaf , and these elements are always of type Int. So, it suffices
to define:

lexeme : : Zipper Root −> Int
lexeme t = let Leaf v = fromJust (getHole t : : Maybe Tree)

in v

As we said, the functions defined in this section could easily be given by
a pre-processor. Indeed, we could have implemented a simple program to go
through the Haskell’s abstract syntax tree that we obtain by parsing the data-
types definitions of Section 3 and finding all its constructors (for constructor)
and all its leaves (for lexeme). We, however, opted not to use this pre-processor
approach because we wanted to give clear and transparent definitions for all the
functions involved in our framework that also could be edited in a simple way
by any programmer. What’s more, the use of a pre-processor is often considered
a disadvantage when one needs to choose to re-use a tool or a setting against
some others.

4 The Algol 68 scope rules

In this section we present an attribute grammar that uses the tree navigating
mechanism of the generic zipper presented in the previous sections to imple-
ment the Algol 68 scope rules [17]. These rules are used, for example, in the
Eli system [18] to define a generic component for the name analysis task of a
compiler.

We wish to construct a modular and deforested program to deal with the
scope rules of the block structured language introduced in Section 2.1. If the
reader recalls the running example, named ”p”, there was an identifier ”x” which
was visible in the smallest enclosing block, with the exception of local blocks that
also contain a definition of ”x”. In the latter case, the definition of ”x” in the
local scope hides the definition in the global one. In a block an identifier may
be declared at most once. In Section 2.1, p is a simple example of a program
we want to analyze. The following program illustrates a more complex situation
where an inner declaration of ”y” hides an outer one.

p’= [use ’ y ; dec l ’ x ;
[dec l ’ y ; use ’ y ; use ’ w ;]

dec l ’ x ; dec l ’ y ;]

Programs such as p or p′ describe the basic block-structure found in many
languages, with the peculiarity that declarations of identifiers may also occur
after their first use. According to these rules, p′ contains two errors: a) at the
outer level, the variable ”x” has been declared twice, and b) the use of the
variable ”w”, at the inner level, has no binding occurrence at all.

We aim to develop a program that analyses Algol programs and computes a
list containing the identifiers which do not obey the scope rules. In order to make
it easier to detect which identifiers are being incorrectly used in a program, we

Zipper-based Modular and Deforested Computations 13

require that the list of invalid identifiers follows the sequential structure of the
program. Thus, the semantic meaning of processing p′ is [w, x].

Because we allow use before declaration, a conventional implementation of
the required analysis leads to a program which traverses the abstract syntax
tree twice: once to accumulate the declarations of identifiers and construct an
environment, and again to check the uses of identifiers using the computed en-
vironment. The uniqueness of names is detected in the first traversal: for each
newly encountered declaration we check whether the identifier has already been
declared at the current level. In this case an error message is computed. Of
course the identifier might have been declared at an outer level. Thus we need
to distinguish between identifiers declared at different levels. We use the level
of a block to achieve this. The environment is a partial function mapping an
identifier to its level of declaration.

As a consequence, semantic errors resulting from duplicate definitions are
computed during the first traversal of a block and errors resulting from missing
declarations in the second one. A straightforward implementation of this program
may be sketched as5:

semant ics : : P −> Errors
semant ics p = m i s s i n g d e c l s (d u p l i c a t e d e c l s p)
d u p l i c a t e d e c l s : : P −> (P’ , Env)
m i s s i n g d e c l s : : (P’ , Env) −> Errors

In this implementation, a ”gluing′” data structure, of type P ′, has to be de-
fined by the programmer and is constructed to pass the detected errors explicitly
from the first to the second traversal, in order to compute the final list of errors
in the desired order. To be able to compute the missing declarations of a block,
the implementation also has to explicitly pass the names of the variables that
are used in a block between the two traversals of the block. This information
must therefore also be in the P ′ intermediate structure.

We start by defining an Haskell datatype that describes Algol syntactically,
whose data constructors will be, similarly to AGs, used as semantic points on
which functions (read attributes) will be defined.

data Root = Root I t s

data I t s = ConsIts I t I t s
| N i l I t s

data I t = Decl String
| Use String
| Block I t s

Next, we implement the same analysis but in terms of an attribute grammar
that does not rely on the construction of any intermediate structure.

As stated before, the language presented in this chapter does not force a
declare − before − use discipline, which means a conventional implementation

5 The interested reader may find in [17, 19] strict and circular solutions to solve these
scope rules.

14 First Class Attribute Grammars for Modular and Deforested Computation

of the required analysis naturally leads to a program that traverses each block
twice: once for processing the declarations of identifiers and constructing an
environment and a second time to process the uses of identifiers (using the
computed environment) in order to check for the use of non-declared identifiers.

An algorithm for processing this language as to be designed in two traversals:

– On a first traversal, the algorithm has to collect the list of local definitions
and, secondly, detect duplicate definitions from the collected ones

– On a second traversal, the algorithm has to use the list of definitions from
the previous step as the global environment, detect the use of non-defined
variables and finally combine the erros from both traversals.

Next, we will define the semantics of the grammar. For every block we com-
pute three things: its environment, its lexical level and its invalid identifiers.
The environment defines the context where the block occurs. It consists of all
the identifiers that are visible in the block. The lexical level indicates the nesting
level of a block. Observe that we have to distinguish between the same identifier
declared at different levels, which is a valid declaration (for example, ”decl y′′

in p′), and the same identifier declared at the same level, which is an invalid
declaration (for example, ”decl x” in p′). Finally, we have to compute the list of
identifiers that are incorrectly used, i.e., the list of errors.

The Attribute Grammar that analyses a phrase of Algol will be composed
by:

– An environment, attribute env, which consists of all the identifiers that are
visible in the block: type Env = [(String, Int)]

– A lexical level, attribute lev, which indicates the nesting level of a block:
type Level = Int

– The invalid identifiers, attribute errs, which contains the list of identifiers
that are incorrectly used: type Errors = [String]

We start by defining the construction of the environment of an Algol pro-
gram. Every block inherits the environment of its outer block. Therefore, we
associate an inherited attribute dcli, that carries an environment, to the non-
terminal symbols Its and It that define a block. The inherited environment is
threaded through the block in order to accumulate the local definitions and in
this way synthesizes the total environment of the block. We associate a syn-
thesized attribute dclo, that also carries the environment, to the non-terminal
symbols Its and It, which defines the newly computed environment.

In our solution, we defined semantic Haskell functions which pattern match
on data constructors. For the readers familiar with Attribute Grammars, there
is an obvious mapping between Haskell functions and attributes, and between
data constructors and grammar productions. The attributes dcli and dclo are
declared as follows:

d c l i : : Zipper Root −> [(String , Int)]
d c l i z = case (con s t ruc to r z) of

Zipper-based Modular and Deforested Computations 15

”Root” −> []
” N i l I t s ” −> case (con s t ruc to r (parent z)) of

” ConsIts ” −> dc lo ((parent z) . $1)
” Block ” −> env (parent z)
”Root” −> []

” ConsIts ” −> case (con s t ruc to r (parent z)) of
” ConsIts ” −> dc lo ((parent z) . $1)
” Block ” −> env (parent z)
”Root” −> []

” Block ” −> d c l i (parent z)
”Use” −> d c l i (parent z)
” Decl ” −> d c l i (parent z)

dc lo : : Zipper Root −> [(String , Int)]
dc lo z = case (con s t ruc to r z) of

” ConsIts ” −> dc lo (z . $2)
” N i l I t s ” −> d c l i z
”Use” −> d c l i z
” Decl ” −> (va lue z , l e v z) : (d c l i z)
” Block ” −> d c l i z

The only production that contributes to the synthesized environment of a
phrase of Algol is Decl. The single semantic equation of this production makes
use of the semantic function ’:’ (written in infix notation) to build the environ-
ment. Note that we are using the Haskell type definition presented previously.
The use of pairs is used to bind an identifier to its lexical level. The single oc-
currence of pseudo-terminal Name is a syntactically referenced in the equation
since it is used as a normal value of the semantic function. All the other semantic
equations of this fragment simply pass the environment to the left-hand side and
right-hand side symbols within the respective productions.

Now that the total environment of a block is defined, we pass that context
down to the body of the block in order to detect applied occurrences of undefined
identifiers. Thus, we define a second inherited that also carries the environment,
called env, to distribute the total environment. It should be noticed that at-
tribute dclo can be used to correctly compute the required list of errors. We
choose to distribute the list of declarations in a new attribute to demonstrate
our techniques, as with this approach we force a two traversal (strict) evalua-
tion scheme. Although this approach is not really needed in the trivial Algol
language, it is a common feature when defining real languages. Env is defined
as:

env : : Zipper Root −> [(String , Int)]
env z = case (con s t ruc to r z) of

” N i l I t s ” −> case (con s t ruc to r (parent z)) of
” Block ” −> dc lo z
” ConsIts ” −> env (parent z)
” Block ” −> dc lo z

” ConsIts ” −> case (con s t ruc to r (parent z)) of
” Block ” −> dc lo z

16 First Class Attribute Grammars for Modular and Deforested Computation

” ConsIts ” −> env (parent z)
”Root” −> dc lo z

” Block ” −> env (parent z)
”Use” −> env (parent z)
” Decl ” −> env (parent z)
”Root” −> dc lo z

The first semantic equation of Block specifies that the inner blocks inherit
the environment of their outer ones. As a result, only after computing the en-
vironment of a block is it possible to process its nested blocks. That is, inner
blocks will be processed in the second traversal of the outer one.

The total environment of the inner blocks, however, is the synthesized envi-
ronment (attribute dclo), as defined for Block. It is also worthwhile to note that
the equations:

”Root” −> dc lo z
” Block ” −> dc lo z

induce a dependency from a synthesized to an inherited attribute of the same
symbol.

Every block has a lexical level. Thus, we introduce one inherited attribute
lev indicating the nesting level of a block. The Haskell primitive function ’+’ is
used to increment the value of the lexical level passed to the inner blocks:

l e v : : Zipper Root −> Int
l e v z = case (con s t ruc to r z) of

”Root” −> 0
” N i l I t s ” −> case (con s t ruc to r $ parent z) of

” Block ” −> (l ev (parent z)) + 1
” ConsIts ” −> l e v (parent z)
”Root” −> 0

” ConsIts ” −> case (con s t ruc to r (parent z)) of
” Block ” −> (l ev (parent z)) + 1
” ConsIts ” −> l e v (parent z)
”Root” −> 0

” Block ” −> l e v (parent z)
”Use” −> l e v (parent z)
” Decl ” −> l e v (parent z)

Finally, we have to synthesize one attribute defining the (static) semantic
errors. We define a second synthesized attribute: errs. The attribution rules for
this semantic domain are shown next:

e r r s : : Zipper Root −> [String]
e r r s z = case (con s t ruc to r z) of

”Root” −> e r r s (z . $1)
” N i l I t s ” −> []
” ConsIts ” −> (e r r s (z . $1)) ++ (e r r s (z . $2))
”Use” −> mBIn (value z) (env z)
” Decl ” −> mNBIn (value z , l e v z) (d c l i z)
” Block ” −> e r r s (z . $1)

Zipper-based Modular and Deforested Computations 17

There are two semantic functions that we need to define: mBIn and mNBIn.
The definition of these functions must be included in the grammar specification.
For this reason, attribute grammar specification languages provide an additional
notation in which semantic functions can be defined. Generally, this notation
is simply a standard programming language. We are embedding AG’s so we
use plain Haskell for these functions. Thus, the two semantic functions look as
follows:

mBIn : : String −> [(String , Int)] −> [String]
mBIn name [] = [name]
mBIn name ((n , l) : e s) = i f (n==name) then []

else mBIn name es

mNBIn : : (String , Int) −> [(String , Int)] −> [String]
mNBIn tup l e [] = []
mNBIn pa i r (p l : e s) = i f (pa i r==pl) then [f s t pa i r]

else mNBIn pa i r es

We may now define a program that implements the semantic analysis de-
scribed, simply by inspecting the errs attribute computed at the topmost loca-
tion of the program:

semant ics : : P −> [String]
semant ics p = e r r s (toZipper p)

This program can be used to compute the list of errors occurring in the p
and p′ programs presented before. As expected, we obtain:

semant ics p = [”x”]
semant ics p ’ = [”w” , ”x”]

5 Breadth-first numbering

The running examples presented so far have shown that zippers provide a mod-
ular and intermediate structure free environment for implementing multiple
traversal algorithms in a functional setting. A key aspect of the implementa-
tions seen earlier in the paper is that they make no essential use of laziness.
In fact, all of these implementations could be straightforwardly translated and
implemented in a strict setting. This property does not hold for the example
that we study in this section.

Consider the problem, described in detail in [20], of breadth first numbering a
binary tree, or bfn for short. A sample input/output to such problem is sketched
next.

18 First Class Attribute Grammars for Modular and Deforested Computation

input output

4

8 2

. . 3

. .

.

1

2 3

. . 4

. .

.

In order to tackle this problem, we follow the approach taken by [20]. To
implement bfn, the author computes a list of integers representing the first
available index on each of the levels of the input tree. This list is initially the
infinite list of ones and is updated as it goes down the tree to produce the
numbering.

In order to implement this algorithm we will need three attributes. Attribute
slist will be used to compute the list of indexes and ilist to pass that list down
the tree. Attribute replace will hold the result of breadth-first numbering a tree.
Attributes slist and replace have the same definition for any tree, regardless of
whether it is the topmost one or one of its subtrees. In this example, we follow
Okasaki by using binary trees instead of binary leaf trees:

data Tree = Fork Int Tree Tree | Empty
deriving (Typeable , Data)

Attributes slist and replace are defined as follows, for any tree location:

s l i s t : : Zipper Root −> [Int]
s l i s t z = case (con s t ruc to r z) of

”Fork” −> (head (i l i s t z) + 1) : (s l i s t (z . $3))
”Empty” −> i l i s t z

r e p l a c e : : Zipper Root −> Tree
r e p l a c e z = case (con s t ruc to r z) of

”Empty” −> Empty
”Fork” −> Fork (head (i l i s t z))

(r e p l a c e (z . $2)) (r e p l a c e (z . $3))
”Root” −> r e p l a c e (z . $1)

The third attribute, ilist, is a little bit more tricky. We have to defined ilist
for the upmost location on the input tree, which we do by testing if the parent
is the ”Root”. We then define the following values for ilist:

i l i s t : : Zipper Root −> [Int]
i l i s t z = case (con s t ruc to r (parent z)) of

”Root” −> [1] ++ (s l i s t z)
{− I f z i s the t h i r d ch i l d , i t i s the r i gh tmos t one−}

otherwise −> case (z . | 3) of
True −> s l i s t (fromJust (l e f t z))
False −> ta i l (i l i s t (parent z))

Zipper-based Modular and Deforested Computations 19

Notice the very peculiar relationship between attributes ilist and slist at
the top level: ilist is defined as the list whose head is 1 and whose tail is slist,
and slist is defined as the list whose head is the head of ilist incremented by 1
and whose tail is the slist value computed for the right subtree of the current
tree. Then, if we try to compute, for example, the value of ilist in a strict
setting, this will cause the value of slist to be fully computed. But slist can
not be computed until ilist is itself computed. Therefore, in a strict setting,
these computations can not be ordered, and this particular program can not
be directly implemented in such a setting. In a lazy setting, however, the use
of head, the standard operator that selects the first element of a list, makes it
possible for the above program to terminate. So, even though our approach does
not fundamentally dependent on laziness, attribute definitions that use laziness
can be accommodated.

It is now simple to obtain a bfn transformer for binary trees:

trans form : : Tree −> Tree
trans form t = r e p l a c e (toZipper (Root t))

6 Related Work

In this paper, we have shown how the zipper data structure can be used to
implement multiple traversal algorithms in a functional language. The imple-
mentations we obtain are modular, do not require the use of intermediate data
structures and do not fundamentally rely on laziness. That is to say that our
implementations benefit from the best of the two traditional ways of expressing
multiple traversal programs described in the introduction.

Uustalu and Vene [21] use zippers in their approach to embed computations
using comonadic structures, with tree nodes paired with attribute values. How-
ever, the zipper approach they use does not appear to be generic and must be
individually instantiated for each new structure. They also rely on laziness to
avoid static scheduling.

Zippers are also used by Badouel et al. [22], where zipper transformers define
evaluations. This approach relies on laziness and their zipper representation is
not generic. This is also the case of [23], that similarly requires laziness and
forces the programmer to be aware of a cyclic representation of zippers.

Yakushev et al. [24] use mutually recursive data types, for which operations
are described with a fixed point strategy. In this work, data structures are trans-
lated into generic representations, used for traversals and updates, and translated
back after. This solution implies the extra overhead of the translations, and also
requires advanced features of Haskell such as type families and rank-2 types.

We have showed previously how zippers can be used to embed AGs on a
functional setting, together with modern extensions [7, 25]. Even though our
library is defined in Haskell, a lazy language, we do not make essential use of
laziness, making the approach extendable to strict languages.

With this work we further extend the functionalities of functional zippers and
show these can be used as a substitute to traditional programming techniques

20 First Class Attribute Grammars for Modular and Deforested Computation

in a functional setting: while we do not rely on laziness, we present a setting
where the programmer can abstract from function scheduling and intermediate
data types and focus on more modular programs.

7 Conclusions

In this paper we presented a zipper-based approach to elegantly and modularly
express circular programs in a functional setting. Our approach does not rely
on laziness such as circular programs do, and does not force the programmer to
deal with intermediate data structures nor to schedule multiple traversal func-
tions. Our solution uses functional zippers as a mechanism to allow generic tree
traversals upon which traversal functions are defined.

We have further proof-tested our approach by embedding other languages in
Haskell, using implementations that avoid functions scheduling and intermediate
data structures. These, together with the examples from this paper, can be found
in www.di.uminho.pt/~prmartins or in the cabal package zipperAG.

As future work we plan to study both the design and implementation of our
embedding when compared to other techniques. Thus, we plan to study how
our embedding compares to first class AGs [2, 26]. Circular programs are known
to have some performance overhead due to lazy evaluation. We want to study
the performance of the zipper embedding, and how the strictification techniques
persented in [27] could be adapted to our setting.

References

1. Bird, R.: Using circular programs to eliminate multiple traversals of data. Acta
Informatica 21 (1984) 239–250

2. de Moor, O., Backhouse, K., Swierstra, S.D.: First-class attribute grammars. In-
formatica (Slovenia) 24(3) (2000)

3. Fernandes, J.P., Pardo, A., Saraiva, J.: A shortcut fusion rule for circular program
calculation. In: Proceedings of the ACM SIGPLAN Haskell Workshop. (2007)
95–106

4. Viera, M., Swierstra, D., Swierstra, W.: Attribute Grammars Fly First-class: how
to do Aspect Oriented Programming in Haskell. In: Procs. of the 14th ACM
SIGPLAN Int. Conf. on Functional Programming (ICFP’09). (2009) 245–256

5. Swierstra, D., Chitil, O.: Linear, bounded, functional pretty-printing. Journal of
Functional Programming 19(01) (January 2009) 1–16

6. Huet, G.: The zipper. Journal of Functional Programming 7(5) (1997) 549–554
7. Martins, P., Fernandes, J., Saraiva, J.: Zipper-based attribute grammars and their

extensions. In Bois, A.R., Trinder, P., eds.: Programming Languages. Volume 8129
of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2013) 135–149

8. Adams, M.D.: Scrap your zippers: a generic zipper for heterogeneous types. In:
Proceedings of the 6th ACM SIGPLAN workshop on Generic programming. WGP
’10, New York, NY, USA, ACM (2010) 13–24

9. Lämmel, R., Jones, S.P.: Scrap your boilerplate: a practical design pattern for
generic programming. In: Procs. of the 2003 ACM SIGPLAN Inter. WorkShop on
Types in Language Design and Implementation. (TLDI ’03), ACM (2003) 26–37

Zipper-based Modular and Deforested Computations 21

10. Kiselyov, O.: Tool demonstration: A zipper based file/operating system. In: Haskell
Workshop. ACM Press (September 2005)

11. Stewart, D., Janssen, S.: XMonad: A tiling window manager. In: Haskell ’07:
Proceedings of the 2007 ACM SIGPLAN Workshop on Haskell, ACM Press (2007)

12. Johnsson, T.: Attribute grammars as a functional programming paradigm. In:
Functional Programming Languages and Computer Architecture. (1987) 154–173

13. Kuiper, M., Swierstra, D.: Using attribute grammars to derive efficient functional
programs. In: Computing Science in the Netherlands CSN’87. (November 1987)

14. Swierstra, D., Azero, P., Saraiva, J.: Designing and Implementing Combinator
Languages. In Swierstra, D., Henriques, P., Oliveira, J., eds.: Third Summer School
on Advanced Functional Programming. Volume 1608 of LNCS Tutorial., Springer-
Verlag (September 1999) 150–206

15. Swierstra, D., Baars, A., Löh, A.: The UU-AG attribute grammar system (2004)
16. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,

Irwin, J.: Aspect-oriented programming. In: ECOOP. (1997) 220–242
17. Saraiva, J.: Purely Functional Implementation of Attribute Grammars. PhD thesis,

Department of Computer Science, Utrecht University, The Netherlands (December
1999)

18. Kastens, U., Pfahler, P., Jung, M.T.: The eli system. In: CC ’98: Proceedings of
the 7th Int. Conf. on Compiler Construction, London, UK, Springer-Verlag (1998)
294–297

19. Fernandes, J.P.: Design, Implementation and Calculation of Circular Programs.
PhD thesis, Department of Informatics, University of Minho, Portugal (March
2009)

20. Okasaki, C.: Breadth-first numbering: lessons from a small exercise in algorithm
design. ACM SIGPLAN Notices 35(9) (2000) 131–136

21. Uustalu, T., Vene, V.: Comonadic functional attribute evaluation. Trends in
Functional Programming, Intellect Books (10) (2005) 145–162

22. Badouel, E., Fotsing, B., Tchougong, R.: Yet another implementation of attribute
evaluation. Research Report RR-6315, INRIA (2007)

23. Badouel, E., Fotsing, B., Tchougong, R.: Attribute grammars as recursion schemes
over cyclic representations of zippers. Electronic Notes Theory Computer Science
229(5) (2011) 39–56

24. Yakushev, A.R., Holdermans, S., Löh, A., Jeuring, J.: Generic programming with
fixed points for mutually recursive datatypes. In: Procs. of the 14th ACM SIG-
PLAN International Conference on Functional programming. (2009) 233–244

25. Martins, P.: Embedding Attribute Grammars and their Extensions using Func-
tional Zippers. PhD thesis, Universidade do Minho (2014)

26. Viera, M., Swierstra, S.D., Swierstra, W.: Attribute grammars fly first-class: how
to do aspect oriented programming in haskell. SIGPLAN Not. 44(9) (August 2009)
245–256

27. Fernandes, J.P., Saraiva, J., Seidel, D., Voigtländer, J.: Strictification of circular
programs. In: Proceedings of the 20th ACM SIGPLAN Workshop on Partial Eval-
uation and Program Manipulation. PEPM ’11, New York, NY, USA, ACM (2011)
131–140

