
Generating attribute grammar-based
bidirectional transformations from rewrite rules

Pedro Martins João Saraiva
HASLab/INESC TEC & Univ. do Minho

Braga, Portugal
{prmartins, jas}@di.uminho.pt

João Paulo Fernandes
HASLab/INESC TEC & Univ. do Minho

RELEASE, Univ. da Beira Interior
Covilhã, Portugal

jpaulo@di.uminho.pt

Eric Van Wyk
Department of Computer Science and

Engineering, Univ. of Minnesota
Minneapolis, Minnessota, USA

evw@cs.umn.edu

Abstract
Higher order attribute grammars provide a convenient means for
specifying uni-directional transformations, but they provide no di-
rect support for bidirectional transformations. In this paper we
show how rewrite rules (with non-linear right hand sides) that spec-
ify a forward/get transformation can be inverted to specify a partial
backward/put transformation. These inverted rewrite rules can then
be extended with additional rules based on characteristics of the
source language grammar and forward transformations to create,
under certain circumstances, a total backward transformation. Fi-
nally, these rules are used to generate attribute grammar specifica-
tions implementing both transformations.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Data Types and Structures, Recursion; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages-
Algebraic approaches to semantics; I.1.1 [Symbolic and Algebraic
Manipulation]: Expressions and Their Representation

Keywords Attribute Grammars, Bidirectional Transformations,
Rewrite Rules

1. Introduction
Attribute Grammars (AGs) [10] are a powerful mechanism to de-
fine complex transformations on tree structures. Originally, at-
tribute grammars were mainly used to express the semantic analysis
of a compiler, but they are now used to express complex multiple
traversal algorithms [19], type system [15], pretty-printing algo-
rithms [22], combinator languages [21], etc. Most of these AG-
based algorithms rely on advanced extensions to the AG formalism
that allow computations on graphs (reference attributes [8]) and dy-
namically evolving trees (higher order attributes [26]). All of these
are efficiently executed by modern attribute grammar systems like,
JastAdd [6], UUAG [25], Silver [24], and Kiama [17].

However, attribute grammars, and their modern extensions, only
provide support for specifying unidirectional transformations, de-
spite bidirectional transformations being common in AG appli-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543745

cations. Bidirectional transformations are especially common be-
tween abstract/concrete syntax. For example, when reporting er-
rors discovered on the abstract syntax we want error messages to
refer to the original code, not a possible de-sugared version of it.
Or when refactoring source code, programmers should be able to
evolve the refactored code, and have the change propagated back to
the original source code.

Another application is in semantic editors generated by AGs [11,
16, 18]. Such systems include a manually implemented bidirec-
tional transformation engine to synchronise the abstract tree and its
pretty printed representation displayed to users. This is a complex
and specific bidirectional transformation that is implemented as
two hand-written unidirectional transformations that must be man-
ually synchronized when one of the transformations changes. This
makes maintenance complex and error prone.

In this paper we show how bidirectional transformations can be
modelled in an attribute grammar setting. We show how rewrite
rules specifying a unidirectional forward (get) transformation can
be inverted to specify a backward (put) transformation. These rules
are used to generate AG specifications implementing both the get
and put transformations. These specifications use a notion of origin
tracking so that nodes in the target tree have access (via reference
attributes) back to the node in the source tree from which they
were created. This link back, when present, is used by put to
produce the original source (sub) tree. The approach can be used
even when the generated put is not total as it allows users to
specify transformations that bring the target tree back into the
domain of put or, as a last resort, specify a portion of the backward
transformation manually. This is important for real languages in
which (hopefully small) portions of the language may fall outside
the scope of this approach.

1.1 Bidirectional Transformations
Bidirectional transformations are programs which express a trans-
formation from one input to an output together with the reverse
transformation, carrying any changes or modifications to the out-
put, in a single specification. In the context of grammars, a bidirec-
tional transformation represent a transformation from a phrase in
one grammar to a phrase in the other, with the opposite direction
automatically derived from the first transformation specification.

When applying the backward transformation to a modified tree,
it is helpful to have access to the original tree to which the for-
ward transformation was applied so that, at least, the unmodified
parts map back to their original representation. For example, in a
transformation A→ B , a bidirectionalization system defines the
B → A transformation, which has to carry any upgrades applied
to B back to a new A′ which is as close as possible to the original
A.

These transformations can be coded in AGs. Of special interest
are tree-based structures such as the ones generated by concrete
and abstract grammars. The problem with these transformations is
that both the forward and the backward transformations need to be
implemented by hand.

In AGs, we can use annotations (a type of attribute computed
when the tree is constructed) and reference attributes so that each
node in the generated abstract tree has a link back to the node
in the concrete tree that constructed it. This is quite useful in
our approach for ensuring that the backward transformation can
transform unmodified sub-trees back to there original form in the
source. Changes on the abstract side will cause some of these
links to be discarded as new link-free tree nodes are created. The
presence of a link back indicates that a tree rooted at that node was
created during the original transformation from concrete to abstract
trees. Furthermore, the put transformation knows what tree created
that tree being ”put back” and can use the link back as its result,
making the transformation very simple and producing as result the
original concrete tree.

The main problem is that coding this all by hand in AGs is quite
tedious and error prone, and dealing with presence and absence of
links back is an extra task that has to be always performed. In this
work we will see how we automatically generate attribute grammar
specifications that are much more complex that we have typically
wanted to write and thus have rarely done.

Another interesting point to consider are the possible mappings
back to the concrete grammar. As we will see, sometimes each
expression in the abstract tree needs to have rules for more than one
transformation back, since it is often the case that multiple concrete
syntax nonterminals will map to a single terminal in the abstract
grammar. The automatic generation of these mappings is another
feature of our system.

1.2 Outline of solution and challenges
In our approach we will specify transformations as rewrite rules,
and define an inversion technique for such rules to specify back-
ward transformations. These are straightforward for applications
where both grammars are isomorphic and the rules define a bijec-
tive transformation since there is a one-to-one mapping between
productions of the grammars. Our challenge is to propose an ap-
proach that works on real, non-isomorphic, grammars that have a
different number of symbols and productions and different gram-
matical structure.

To make this possible, we extend transformations with links
from that target syntax tree back to the source so that unchanged
trees know what they were transformed from and can transform
directly back to. Furthermore, we want a solution that works on
many types of transformations and grammars, but can be used
in a system that gracefully degrades when a component of that
transformation cannot be handled automatically by the inversion
of rewrite rules. Sometimes the target tree is manipulated so that
if falls out of the ranges of the get transformation. We thus need
an allowance for repairing trees to bring them back into this range.
Other times the get transformation cannot be specified as rewrite
rules and we would like to use the system still, if only on those
parts of the language for which it will work. In these cases hand-
coded techniques can still be applied.

1.3 Contributions
As contributions, in this paper we:

• Use an algebraic approach to define invertible rewrite rules that
specify bidirectional transformations between grammars.

• Define an automation of strategies to maintain links to the
source tree. We also explain how attribute specifications that
implement these features can be automatically produced.

• Support non-linear rewrite rules to handle complex transforma-
tion, and define automatic techniques both to invert these rules
and to generate attribute specifications from them.

• Formalize dynamic analyses of trees in the form of attribute
specifications that automatically detect if certain trees or sub-
trees need special refactoring strategies to fit into the scope of
the transformations. The point is to allow some manual inter-
vention for the, hopefully small, portions of the transformations
that cannot be generated completely automatically.

• Provide a prototype that implements all the features and speci-
fications described in this paper.

In this paper section 2 provides some background. Section 3
explains how rewrite rules can define bidirectional transformations,
including links back to the source. In Section 4 we show how non-
linear rules and tree refactoring are supported. Section 5 discusses
related work and Section 6 concludes.

2. Background
We start with a little background needed to understand the paper.

Algebraical Background: We use an algebraic approach and
benefit from existing techniques from Chirica et al [2] and Cour-
celle and Franchi-Zannettacci [3] in defining AGs algebraically.

We start by defining an operator scheme: Σ = 〈S, F, σ〉 where
S is a set of sorts (sort names), F is a set of operator or function
names and σ maps F to S∗ × S. For grammars, sorts correspond
to nonterminals and terminals, operators correspond to production
names, and signatures in σ correspond to productions. Constants
are treated as nullary operators. A Σ-algebra: Aσ is defined as:

• {As}s∈S - an S-indexed family of sets, called carrier sets

• {fA : As1 × As2 × ... × Asn → As | f ∈ F, σ(f) =
S1×S2× ...×Sn → S}. For each function name f ∈ F there
is a function fA over the appropriate carrier sets in {As}s∈S as
indicated by the signature of f , σ(f).

Word algebras, over variables, specify (ground) terms or pat-
terns, if variables are used, and are denoted WΣ(V) for variables
V . An example of a word is ”plus(mul(a, b), c)”, where ’a’, ’b’
and ’c’ are variables. We will find a need to order patterns (words
with variables) from least specific to most specific. We use a stan-
dard notion of specificity in that one word is more specific than
another if the set of ground terms created from all instantiations is
a subset of such ground terms for another pattern.

In this paper, the terms term , word and tree; the terms
production , operator and constructor and the terms type , sort
and nonterminal have the same meaning and are interchangeably.

Attribute Grammars: In attribute grammars, equations define
semantic-valued attributes on syntax tree nodes [10]. Due to space
limitations AGs, and their extensions [8, 19, 24, 26] are explained
as needed below.

3. Generating backward transformations from
rewrite rules

In this section we will see how rewrite rules are used to define
transformation specifications and how these can be automatically
inverted to form a backward transformation.

Source language: ΣE = 〈SE , FE , σE〉 where:

• SE = {E, T, F, digits, ‘ + ’, ‘− ’, ‘ ∗ ’,
‘/’, ‘(’, ‘)’, String},

• FE = {add , sub, et ,mul , div , tf ,nest , const , digits,
neg , ‘ + ’, ‘− ’, ‘ ∗ ’, ‘/’, ‘(’, ‘)’,String},

• σE(add) = E ‘ + ’ T → E,
σE(sub) = E ‘− ’ T → E,
σE(et) = T → E,
σE(mul) = T ‘ ∗ ’ F → T,
σE(div) = T ‘/’ F → T,
σE(tf) = F → T,
σE(nest) = ‘(’ E ‘)’→ F,
σE(neg) = ‘− ’ F → F,
σE(const) = digits → F,
σE(digits) = String → digits,
σE(‘ + ’) = ε→ ‘ + ’,
σE(‘− ’) = ε→ ‘− ’, ...

Target Language: ΣA = 〈SA, FA, σA〉 where

• SA = {A,String}
• FA = {plus,minus, times, divide, constant}
• σA(plus) = A A→ A,
σA(minus) = A A→ A,
σA(times) = A A→ A,
σA(divide) = A A→ A,
σA(constant) = String → A

Figure 1: Concrete and abstract syntax of arithmetic expres-
sions.

3.1 Source and target languages
Our first example is given in Figure 1 and shows the operator
scheme ΣE for the source language E and ΣA for the target lan-
guageA. Some readers will be more familiar with the BNF notation
for context free grammars, which is similar to algebras and can be
easily translated into this algebraic setting. Nonterminal and termi-
nal symbols become sorts. The sorts E, T , F in SE correspond to
the nonterminals commonly used in this example. The sort digits
represents an integer literal terminal, and the operator and punc-
tuation symbols are given sort names by quoting the symbol. For
example, ‘ + ’ corresponds to the terminal symbol for the addi-
tion symbol. Strings are also used and play the role of lexemes on
scanned tokens; thus we have the sort String .

The productions in a grammar correspond to operators, in this
example: add , sub, et ,mul , div , tf ,nest , neg , const ∈ FE for
the concrete syntax. The signature of each of these operators is
given by σE and is written “backwards” from how they appear in
BNF. For example, the operator add is a ternary operator taking
values of sort E, ‘ + ’, and T and creating values of type E, as
denoted by σE(add) = E ‘ + ’ T → E.

There is also a single operator for each terminal symbol. If the
regular expression that would be associated with a terminal in its
scanner specification is constant, then this operator is nullary. If it
is not constant but identifies a pattern for, say, variable names or
integer constants, then we make the signature unary with String
being the single argument. We will refer to nullary terminal opera-
tors as constant, and unary terminal operators as non-constant. To

• The sort map: smget :: FE → 2F
A

smget(E) = {A}, smget(T) = {A}, smget(F) = {A}
• The rewrite rules rwget :

getEA (add(l , ‘ + ’, r))→ plus(getEA (l), getTA (r))
getEA (sub(l , op, r))→ minus(getEA (l), getTA (r))
getEA (et(t))→ getTA (t)
getTA (mul(l , ‘ ∗ ’, r))→ times(getTA (l), getFA (r))
getTA (div(l , ‘/’, r))→ divide(getTA (l), getFA (r))
getTA (tf (f))→ getFA (f)
getFA (neg(‘− ’, r))→ minus(constant(“0 ”), getFA (r))
getFA (nest(‘(’, e, ‘)’))→ getEA (e)
getFA (const(digits(d))→ constant(d)

Figure 2: User provided forward transformation specification.

avoid too much notational clutter we will overload sort and operator
names for those corresponding to terminal symbols.

Trees in this language are written as terms or words from the
corresponding word algebra, parametrized by a set of strings repre-
senting lexemes. This algebra is technically denoted WΣ(String)
but we omit String below. We overload String to denote the sort,
as in Figure 1, and here to denote the carrier set of strings.

3.2 Specifying the forward transformation
As in most approaches to bidirectional transformation, the forward
transformation is provided and used to generate the backward trans-
formation. Here we describe the structure of the forward specifica-
tions used in our approach and provide the forward transformation
specification from ΣE to ΣA, which is shown in Figure 2.

In defining the forward transformation, the first part of the spec-
ification is the sort-map, which in our approach will be generalized
so that the range of the sort map is a set of sorts in the target. In our
first example, this maps all of the source sorts of expressions (E,
T , and F) to the single sort for expressions in the target/abstract
scheme A.

The patterns used in the rewrite rules to specify the translation
from the source to the target are not merely terms from the (word
algebra of the) source or target language (extended with variables).
We create additional operators, based on the sort map, whose sig-
natures include sorts from both the source language and the target
language. From a sort map sm, we create additional operators:

{getXY |sm(X) = Y }

indicating that the forward (get) transformation maps an X in the
source to a Y in the target. The signatures for such operators are as
expected:

σget(getXY) = Y → X, ∀X ∈ SS , Y ∈ sm(X) .

The left and right hand sides of the rewrite rules are then words in
a word algebra for the operator scheme that include both the source
and target operator schemes and these attribute-like operators. Left
hand side and right hand side patterns are words in WΣget (V) for a
sort-indexed set of variable names V . Both the left and right hand
side are terms of the same target language sort. Note that we do not
have rules for sorts corresponding to terminal symbols; they have
no translation in the target.

Restrictions on forward transformation specifications: We place
a number of restrictions on forward transformation specifications

from ΣS = 〈SS , FS , σS〉 to ΣT = 〈ST , FT , σT 〉 to ensure that a
backward transformation can be generated. Some of these restric-
tions are removed in later sections. We assume only type correct
words are used here and in the remainder of the paper.

1. First, |sm(X)| ≤ 1, X ∈ SS . Each sort in the source maps to
one or zero items in the target.

2. Second, words on the left hand side of a rewrite rule must
have the form getXY (p(v1 , ..., vn)) for some p ∈ FS in which
v1, ..., vn are variables or are terms that do not contain vari-
ables. Furthermore, all variables on the left hand side must ei-
ther (i) appear on the right hand side, or (ii) be of a sort that
contains only one value, for example the sorts of so-called con-
stant terminal symbols.

3. When viewed as patterns, the words on the left hand side of the
rules must not be overlapping, that is there can be no substitu-
tion of their variables that results in the same word.

4. We also need to ensure that the forward transformation specifies
a total function from ΣS to ΣT .

Definition 1. A transformation specification from source ΣS =
〈SS , FS , σS〉 to target ΣT = 〈ST , FT , σT 〉 is total if for each
X ∈ SS and Y ∈ sm(X) there exists a rule with the left hand
side of the form getXY (p(v1 , ..., vn)) for each p ∈ FS in which
v1, ..., vn are variables.

In terms of attribute grammars this is the definition of an at-
tribute grammar that passes the closure test [10].

5. Words on the right hand side are also restricted. For a rule with
the left hand side

getXY (p(v1 , ..., vn))

the right hand side must be a word in which for any sub-word
of the form getX

′

Y ′ (w), the word w must be a variable. We will
lift this restriction in a later section.

Generating attribute grammar equations: Since our aim is to
implement both the forward, and generated backward, transforma-
tions in attribute grammars we need to convert the rewrite rules to
attribute grammar equations.

Generating attribute grammar equations from rules of this type
specified above is quite straightforward. For example, the rule

getEA (add(l , ‘ + ’, r))→ plus(getEA (l), getTA (r))

is expressed as the following attribute grammar equation on the
add production that has the signature e ::E ::= l ::E ‘ + ’ r ::T :

e.getEA = plus(l .getEA , r .getTA)

In later examples we will see that rewrite rules can be more com-
plex and thus the translation to attribute grammar code is less direct.

3.3 Generating the backward transformation
In this section we describe the process for inverting the forward
transformation to generate the backward one.

Inverting the sort map and rewrite rules: The first step is to
invert the sort map. In our example this inversion leads to a sort map
smput that maps the abstract sort A back to three concrete sorts E,
T , and F . The inverted sort map now maps target sorts to multiple
source sorts. Thus, we really are defining 3 put transformations:
putting anA back to anE, back to a T , and back to an F . This is the
basis for the put operators that are analogous to the get operators
seen above.

The second step is to invert the rewrite rules. The result of this
process for the rules in Figure 2 produces the rules in Figure 3.

• The sort map: smput :: FA → 2F
E

smput(A) = {E, T, F}
• The rewrite rules rwput

putAE (plus(l , r))→ add(putAE (l), ‘ + ’, putAT (r))
putAE (minus(l , r))→ sub(putAE (r), ‘− ’, putAT (r))
putAE (minus(constant(“0 ”), r))→ neg(‘− ’, putAF (r))
putAE (t)→ et(putAT (t))
putAT (times(l , r))→ mul(putAT (l), ‘ ∗ ’, putAF (r))
putAT (divide(l , r))→ div(putAT (l), ‘/’, putAF (r))
putAT (f)→ tf (putAF (f))
putAF (e)→ nest(‘(’, putAE (e), ‘)’)
putAF (constant(d))→ const(digits(d))

Figure 3: Direct inversion of forward transformation specifi-
cation.

Given the restriction on the forward transformation, this process is
relatively straightforward. A rule of the form

getXY (w(v1 , ..., vn))→ w ′(getX1
Y1

(v1), ..., getX1
Y1

(vn))

where vi is of sort Xi and sm(Xi) = {Yi} is inverted to form the
rule

putYX (w ′(v ′1 , ...v
′
n))→ w(putY1

X1
(v ′1), ..., putYn

Xn
(v ′n))

in which the variables v′i are of sort Yi. This can be seen in the
inverted rules in Figure 3.

Extending the rules: Consider a transformation in an abstract
syntax that creates the subtree times(, plus(,). While the sec-
ond argument of mul is of sort F, plus maps most directly back to
an E. Thus the backward transformation must create a source term
of type F from term plus(,).

The key to solve this problem lies in the rules with a right hand
side of the form putYX (v) → w(putYX ′(v)), where w is a word
containing the sub-word putYX ′(v) which holds the only variable,
namely v. Such a rule shows how to transform any term of type X ′

in the source language to one of typeX in the source language. For
example, the rule putAF (e)→ nest(‘(’, putAE (e), ‘)’) in Figure 3
shows that a term of type E can be converted to one of type F by
wrapping it in parenthesis, that is, in the term nest(‘(’, , ‘)’).

We specialize the inverted rewrite rules of this form so that their
left hand sides are of the form getXY (p(v1 , ..., vn)) for p ∈ FA in
which v1, ..., vn are variables of the appropriate type:

1. If

(a) ∃X ∈ SS and Y ∈ sm(X) such that there does not
exists a rewrite rule whose left hand side has the form
gpX

Y (p(v1 , ..., vn)) for some p ∈ FS such that return type
of p is X (For some α, σΣ(p) = α → X) and for some
variables v1, ..., vn, and

(b) there exists a rule of the form gpX
Y (t)→ w(gpX

Y ′(t))

then add the rule gpX
Y (p(v1 , ..., vn))→ w(gpX

Y ′(p(v1 , ..., vn)))

2. Repeat step 1 until no more rules can be added.

For example, the rule putAF (e)→ nest(‘(’, putAE (e), ‘)’) in
Figure 3 shows that a term of typeE can be converted to one of type
F by wrapping it in parenthesis, that is, in the term nest(‘(’, , ‘)’).

GET

PUT

Figure 4: Using links back.

From the original rules we would add the following rule:

putAF (plus(l , r))→ nest(‘(’, putAE (plus(l , r)), ‘)’) .

and then repeat this process until we have as much extended rules as
possible. The extended, inverted rewrite rules can now be checked
for totality with the original definition of totality 1.

Generating attribute grammar equations: From these extended
set of rules, we generate AG equations as described before, result-
ing in three equations on productions such as plus: one for putAE ,
putAT , and putAF . Notably, the generated put transformation does
not add any unnecessary parenthesis, a common problem with sim-
ple string-based printing mechanisms.

3.4 Links back: making use of the original source term
The perceptive reader might have noticed there is a specific pro-
duction, neg, for which generating attribute equations presents a
new challenge. The issue is that the inversion of that rule and the
rule for sub creates backward transformation rules with overlap-
ping left-hand sides, as seen in Figure 3. To address this, the get
transformation adds links on generated abstract (sub) trees that re-
fer back to the respective concrete (sub) tree that generated them.

Figure 4 shows this situation diagrammatically: the source tree
and the target with links back is shown on top. In transforming the
target tree, links back do not exist on newly constructed nodes as
indicated by the lack of arrows back to the source tree. The portion
in the oval (in red) was newly created, as well as the nodes on the
spine to the root of the tree.

To be concrete, consider the phrase

sub(et(tf (const(digits(“0 ”)))), ‘− ’, x)

that became

minus(constant(“0 ”), x)

in the target. If the original (sub) tree in the abstract tree was
maintained during a transformation then it has a link back to the
original tree of sort E and can return that when queried for its
put attribute putAE . This ensures that we can recover the original
source tree in the put transformation, when the put transformation
is mapping it back to its original type, here E. In case that the link
back is of sort F , the can-be rules can be used in a manner similar
as they were above. This can be seen in the generated attribute
equation for minus for putAE below:

minus : s ::A ::= l ::A r ::A
s.putAE = case s.link of

linkE (e)→ e
linkF (f)→ et(tf (f))
⊥ → sub(l .putAE , r .putAE)

Source language: ΣC = 〈SC , FC , σC〉 where:

• SC = {RootC ,DeclsC ,DeclC ,VarsC ,Typec ,
‘, ’, ‘; ’, String},

• FC = {rootC , consDeclC ,nilDeclC ,multiDeclC ,
consVarC , oneVarC , intTypeC ,floatTypeC ,
arrayTypeC , ‘, ’, ‘; ’,String}

• σC(rootC) = DeclsC → RootC ,
σC(consDeclC) = DeclC DeclsC → DeclsC ,
σC(nilDeclC) = ε→ DeclsC ,
σC(multiDeclC) = TypeC V arsC ‘; ’→ DeclC ,
σC(consVarC) = String ‘, ’ V arsC → V arsC ,
σC(oneVarC) = String → V arsC ,
σC(intTypeC) = ‘int’→ TypeC ,
σC(floatTypeC) = ‘float’→ TypeC ,
σC(arrayTypeC) = ‘array’ TypeC → TypeC

Target: ΣA = 〈SA, FA, σA〉 where

• SA = {RootA, DeclA, T ypeA, String}
• FA = {rootA, seqDeclA, skipDeclA, intTypeA,

floatTypeA, arrayTypeA,String}
• σA(rootA) = DeclA → RootA,
σA(seqDeclA) = DeclA DeclA → DeclA,
σA(skipDeclA) = ε→ DeclA,
σA(varDeclA) = TypeA String → DeclA,
σA(intTypeA) = ε→ TypeA,
σA(floatTypeA) = ε→ TypeA,
σA(arrayTypeA) = TypeA → TypeA

Figure 5: Concrete and abstract syntax for variable declara-
tions.

One important remark is this process, maintenance and usage of
the links back (and the canbe relation) is completely automatic and
requires no extra coding.

3.5 Allowing overlapping rewrite rules
In order to generate equations we need to sort the rewrite rules
based on the specificity of the left hand side and use these left hand
side in a case-expression to select the most specific one.

On the transformation that have minus as domain (Figure. 3),
we sort the rewrite rules so that the most precise one is used
before the more general ones: the transformation tries to apply
putAF (minus(constant(“0 ”), f)) first, because it is more specific.

The techniques described in this section create a setting where
we can describe complex transformations between grammars with
various nonterminals and produce, from these rules, attribute spec-
ifications for the transformation in both directions.

4. Supporting non-linear, compound rules and
partial transformations

In this section we extend the process described above to apply to
non-linear, compound rewrite rules. We also describe a means for
handling two situations in which the generated backward transfor-
mation is partial. The first is when some hand-written manipulation
of the target tree can move it back into the domain of the backward

transformation; the second is fall-back case in which some portion
of the backward transformation must be written manually.

4.1 Non-linear, Compound Rule Specifications
We start by presenting in Figure 5 a new pair of concrete and ab-
stract algebras/grammars. The concrete syntax allows sequences of
declarations of the form “int x , y , z ;” while the abstract requires
simpler declarations of just one variable, and thus this example be-
comes “int x ; int y ; int z” in the abstract.

To support transformations such as this, we allow the right hand
side of rewrite rules to have attribute operators (getXY) that contain
a term (a tree) instead of just a variable. Such rules are called
compound. In particular, for the grammars defined in Figure 5,
consider the two rules for the production multiDeclC (also shown
in Figure 6):

• getDeclC
DeclA

(multiDeclC (t , oneVarC (v , ‘, ’)))
→ varDecl(getTypeC

TypeA
(t), v)

• getDeclC
DeclA

(multiDeclC (t , consVarC (v , ‘, ’, rest)))

→ seqDecl(varDecl(getType
TypeC

(t), v),

getDeclC
DeclA

(multiDeclC (t , rest , ‘; ’)))

The first rule is similar to the ones we have seen in previous sec-
tions. In the more interesting second rule, the right hand side creates
a new term/tree in the concrete syntax (multiDeclC (t , rest , ‘; ’))
on which we recursively apply the forward transformation getDeclC

DeclA
.

To generate the forward transformation AG equations for the
first rule we use the strategy presented in Section 3.3. For the
second rule, the same process now defines a new concrete tree
and then accesses the getDeclC

DeclA
attribute on that “locally” created

tree. This process, described in general below, creates the following
equation for the getDeclC

DeclA
on the multiDeclc production:

multiDeclc : d ::Declc ::= t ::TypeC vars ::VarsC ‘; ’
d .getDeclC

DeclA
= case d of

multiDeclC (t , oneVarC (v ,),)→ varDecl(t .getTypec
TypeA

, v)
multiDeclC (t , consVarC (v , , rest),)

→ seqDecl(varDecl(t .getTypeC
TypeA

, v),

(multiDeclC (t , rest ,′ ;′)).getDeclC
DeclA

)

Inverting the rewrite rules: Inverting the rules for multiDeclC
creates non-linear rewrite rules with side conditions. The inverted
rules for multiDeclC are shown below:

• putDeclA
DeclC

(varDeclA(t , v))

→multiDeclC (putTypeA
TypeC

(t), oneVarC (v), ‘; ’)

• putDeclA
DeclC

(seqDeclA(varDecl(t , v), right))

→multiDeclC (putTypeA
TypeC

(t), consVarC (v , ‘, ’, rest))

where putDeclA
DeclC

(right) = multiDeclC (putTypeA
TypeC

(t), rest , ‘; ’)

Previously, on forward transformation rules, (i) variables on the
left were wrapped with a put operator on the right of the put rule,
and (ii) variables on the right wrapped by a get operator became
(unwrapped) variables on the left of the put rule. This can be seen
in the first inverted rule above. For the second rule, we generalize
this process so that in the forward transformation rules, a term
trm on the right wrapped by a get operator becomes new variable
(right in the case above) on the left of the put rule and creates a
side condition of the form put (right) = trm′, where trm′ is the
result of applying this process to trm. Note that this generalized
process wraps variables of sorts in the target with a put operator,
but not those with a sort in the source. In the above example t is
wrapped with putTypeA

TypeC
but rest is not. Note that applying this

• The sort map: smget :: FC → 2F
A

smget(RootC) = {RootA},
smget(DeclA) = {DeclsC , DeclC},
smget(TypeA) = {TypeC}

• The rewrite rules rwget :

getRootC
RootA

(rootC (c))→ rootA(getDeclsC
DeclA

(c))

getDeclC
DeclsA

(consDeclC (d , rest))

→ seqDeclA(getDeclC
DeclA

(d), getDeclsC
DeclA

(rest))

getDeclsC
DeclA

(nilDeclC ()))→ skipDeclA()

getDeclC
DeclA

(multiDeclC (t , oneVarC (v),′ ;′))

→ varDecl(getTypeC
TypeA

(t), v)

getDeclC
DeclA

(multiDeclC (t , consVarc(v ,′ ,′ , rest),′ ;′))

→ seqDecl(varDecl(getTypeC
TypeA

(t), v),

getDeclC
DeclA

(multiDeclC (t , rest ,′ ;′)))

getTypeC
TypeA

(intTypeC ())→ intTypeA()

getTypeC
TypeA

(floatTypeC ())→ floatTypeA()

getTypeC
TypeA

(arrayTypeC ())→ arrayTypeA()

Figure 6: User provided forward transformation specification
for declarations.

extended process to the first multiDeclC rule results in one that
directly simplifies to the one shown above.

Generating attribute grammar equations: Generating the at-
tribute equations for compound, non-linear rules with side condi-
tions used either in the forward or generated backward transforma-
tion requires extending process described in the previous section,
where the case-expressions are used as components in the attribute
equations when no links back to the source applied and thus fit into
the equations as previously specified.

The pattern p in the left hand side of the rule becomes the pattern
on the left of the case clause. The existence of side conditions in-
duce a nested case on newly created variables (see above) on which
the appropriate put attribute has been applied. This can be seen in
the equation, shown in Figure 7, for the second multiDeclC rule.
The nested case checks that the target tree (right) could be gener-
ated, by the get transformation, from the source tree in the com-
pound part of the term. In our example we check if right .putDeclA

DeclC

matches the tree nested under a put : multiDeclC(t, rest,′ ;′) un-
der putDeclA

DeclC
in the compound rule above.

For the non-linear aspect we could generate case clauses of the
form pattern | check → expr in which check is a Boolean
expression that uses variables matched in pattern (here to check
that they are equal) that must evaluate to true for the clause to be
used. In our case we are generating attribute grammar for Silver,
an AG system that does not support such case clause and thus we
extract them into a separate if-then-else expressions. This is seen in
the partial equation for putDeclA

DeclC
in Figure 7.

4.2 Tree Repairs
In this example, the sequences of declarations in the source and
target take different forms. In the source, it is a list formed by tradi-
tional cons and nil operators. But in the target, a more general tree
structure is allowed using seq and skip (empty) operators. Using
the techniques described above, the range of the get transforma-
tion is not the full range of valid sequences of declarations in the

seqDeclA : d :: DeclA ::= d1 :: DeclA d2 :: DeclA
d.putDeclA

DeclC
= case d of
seqDeclA(varDeclA(t1 , v), right)→ case right .putDeclA

DeclC
of

multiDeclC (t2 , rest , ‘; ’) → if t2 .putTypeA
TypeC

== t1 then multiDeclC (t2 , consVarC (v , ‘, ’, rest), ‘; ’)
else error(“Failed to pattern match!”)

d.needs repairDeclA
DeclC

= case d of
seqDeclA(varDeclA(t1 , v), right)→ case right .putDeclA

DeclC
of

multiDeclC (t2 , rest , ‘; ’) → if t2 .putTypeA
TypeC

== t1 then false else true

Figure 7: Sketch of attribute specification and the needs repair attribute from non-linear, compound rewrite rules with side conditions.

target and thus the generated backward transformation is not total,
it is only partial. Only sequences that have a list-like shape in the
abstract can be mapped back to the concrete.

To see this, note that the inversion of the rule

getDeclA
DeclsC

(consDeclC (d , rest))

→ seqDeclA(getDeclC
DeclA

(d), getDeclsC
DeclA

(rest))

yields the following rule, with variables changed to be more appro-
priate for the abstract syntax, for the backward transformation:

seqDeclA(d1 , d2)→ consDeclC (getDeclA
DeclC

(d1), getDeclsA
DeclC

(d2))

Note that from an abstract production seqDeclA, we need to get
a DeclC from the left child d1 and a Declsc from the right child
d2. If d1 is of the form varDecl(t ,n) this is no problem since there
will be a transformation rule from these back to a multiDeclC , via
one of the rules in Figure 6. But if d1, after some transformation on
the abstract tree has taken place, is a seqDeclA or a skipDeclA then
this tree is not in the domain of the backward transformation.

However, in many cases like this, it is possible to repair such
trees and convert them back to a list-like structure so that they are
in the domain of the generated put . We extend these techniques
to generated AG equations to detect if the target tree is in the
domain of the put transformation: in this case, a needsRepairDeclA

DeclC
attribute that is true on nodes of sort DeclA that need to be repaired
before transforming back to a DeclC sort in the source.

Generating equations for a needsRepairDeclA
DeclC

attribute is quite
straightforward since is has the same structure as the equations for
the corresponding attribute putDeclA

DeclC
, as can be seen in the second

equation in Figure 7. Constructed trees are replaced by false and
error-cases are replaces by true .

In such cases, the user must write attribute equations, repairDeclA
DeclC

in this case, that convert the tree into a form that is in the domain
of the put transformation. In this case an accumulating inherited
attribute can be used to provide a DeclA with the tail of the list that
should follow it. The point being that such repairs can be made, but
equations must be written by hand.

In generating the put attribute equations, the framework will
then replace attribute accesses of the form n.putDeclA

DeclC
with expres-

sions that query the needsRepairDeclA
DeclC

attribute: if it is true the tree
is first repaired before performing the put transformation, other-
wise the putDeclA

DeclC
attribute is safely accessed.

Such an approach allows this framework to gracefully degrade
in situations in which the generated backward transformation is
partial, but the trees in the target can be manipulated (repaired) to

be in the domain of the generated backward transformation. For
real-world languages we expect there to be situations in which the
techniques described in this paper cannot generate a total backward
transformation, but the approach can still be used on those (hope-
fully large) portions of the language.

5. Related Work
Data transformations are an active research topic with multiple
strategies applied on various fields, some with a particular emphasis
on rule-based approaches. Czarnecki and Helsen in [4] present a
survey of such techniques, but while they mention bidirectionality,
they do not focus on it.

Bidirectional data transformations have been studied in differ-
ent computing disciplines, such as updatable views in relational
databases [1], programmable structure editors [9], model-driven
development in software engineering [20], among others. In [5] a
detailed discussion and extensive citations on bidirectional trans-
formations are included.

A well-regarded approach to bidirectionalization systems is
through lenses combinators [1, 7]. These define the semantic foun-
dation and a core programming language, for bidirectional transfor-
mations on tree-structured data, but it only works well for surjective
(information decreasing) transformations, whereas our system can
cope with very heterogeneous source and target data types.

The approach followed in [14] uses a language for specifying
transformations very similar to the one presented in this work, with
automatic derivation of the backward transformation. Similar to our
approach, this system statically checks whether changes in views
are valid without performing the backward transformation, but they
do not provided type-solving techniques such as provided by our
can-be-based rule extension approach.

In the context of attribute grammars, Yellin’s early work on
bidirectional transformations in AGs defined attribute grammar in-
version [27]. In attribute grammars inversion, an inverse attribute
grammar computes an input merely from an output, but in our bidi-
rectional definition of attribute grammars, a backward transforma-
tion can use links to the original source to perform better trans-
formations. Thus, our approach can produce more realistic source
trees after a change to the target.

6. Conclusion
In this paper we have shown how rewrite rules can be used to
specify forward transformation, be automatically inverted to spec-
ify backward transformations, and then be implemented in attribute
grammars where the quality of the transformation is enforced.

It is important to note that the features our bidirectionalization
system supports are completely automatic for many application,

freeing the programmer of having to write complex attribute equa-
tions that have to perform multiple pattern matching, manage both
the links back and their types, prioritizing transformations, etc. The
only part of our system which is not automatic are the tree repairs,
but even in these cases we generate attributes to check for the need
of repairs, further simplifying the programmers work.

We have implemented this approach in a Haskell prototype tool,
available from http://www.di.uminho.pt/~prmartins. It has
been used to implement all examples in this paper and automati-
cally inverts the transformation and generates the attributes specifi-
cations for Silver [24].

There are few areas we plan to address. The first would be
the generalization of this work to other attribute grammar systems
beside Silver. We would like to generate AG specifications for
other systems such Kiama [17], LRC [11] and JastAdd [6] or AG
embeddings such as [13] so as to provide these techniques to a
wider audience in the attribute grammar community.

That said, we would also like to implement these techniques as
an extension to Silver, so that one can write these rewrite rules that
define a forward transformation over Silver-specified grammars in
the same Silver files that define the grammars. Silver is designed
to be extensible so that new features, such as these rewrite rules,
can be parsed as Silver specifications, analysed, and then translated
down to core Silver specifications such as the attribute equations
described above.

Finally, we would like to evaluate this approach on a number of
mainstream syntactically rich languages. Once the Silver extension
implementing these techniques is complete would use the approach
on our Java [23], Promela [12] and ANSI C specifications.

Acknowledgements This work is partly funded by projects:
ERDF through the programme COMPETE, project reference
FCOMP-01-0124-FEDER-020532, by the North Portugal Regional
Operational Programme (ON.2 ? O Novo Norte), under the Na-
tional Strategic Reference Framework (NSRF), through the Euro-
pean Regional Development Fund (ERDF), project reference RL3
SENSING NORTE-07-0124-FEDER-000058, by the Portuguese
Government through FCT (Foundation for Science and Technol-
ogy), and by the FLAD/NSF program Portugal-U.S. Research Net-
works 2011.

References
[1] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses:

A language for updatable views. In Procs. of ACM Principles of
Database Systems (PODS), pages 338–347. ACM, 2006.

[2] L. Chirica and D. Martin. An order-algebraic definition of Knuthian
semantics. Mathematical Systems Theory, 13(1):1–27, 1997.

[3] B. Courcelle and P. Franchi-Zannettacci. Attribute grammars and
recursive program schemes I. Theoretical Computer Science, 17(2):
163 – 191, 1982.

[4] K. Czarnecki and S. Helsen. Feature-based survey of model transfor-
mation approaches. IBM Systems Journal, 45(3):621–645, 2006.

[5] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. F. Ter-
williger. Bidirectional transformations: A cross-discipline perspective.
In Procs. of Theory and Practice of Model Transformations (ICMT),
number 5563 in LNCS, pages 260–283. Springer-Verlag, 2009.

[6] T. Ekman and G. Hedin. The Jastadd extensible Java compiler. In
Procs. of ACM SIGPLAN Object-oriented Programming Systems and
Applications (OOPSLA), pages 1–18. ACM, 2007.

[7] J. Foster, M. Greenwald, J. Moore, B. Pierce, and A. Schmitt. Combi-
nators for bidirectional tree transformations: A linguistic approach to
the view-update problem. ACM Transactions on Programming Lan-
guages and Systems, 29(3):17, 2007.

[8] G. Hedin. Reference Attributed Grammars. In Proc. of Workshop on
Attribute Grammars and their Applications (WAGA), pages 153–172.
INRIA Rocquencourt, 1999.

[9] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for de-
veloping structured documents based on bidirectional transformations.
In Procs. of Partial Evaluation and Program Manipulation (PEPM),
pages 178–189. ACM, 2004.

[10] D. E. Knuth. Semantics of context-free languages. Mathematical
Systems Theory, 2(2):127–145, 1968. Corrections in 5(1971).

[11] M. Kuiper and J. Saraiva. Lrc - A Generator for Incremental
Language-Oriented Tools. In Procs. of Compiler Construction (CC),
number 1383 in LNCS, pages 298–301. Springer-Verlag, 1998.

[12] Y. Mali and E. Van Wyk. Building extensible specifications and imple-
mentations of promela with AbleP. In Proc. of Intl. SPIN Workshop on
Model Checking of Software, volume 6823 of LNCS, pages 108–125.
Springer-Verlag, July 2011.

[13] P. Martins, J. P. Fernandes, and J. Saraiva. Zipper-based attribute
grammars and their extensions. In Procs. of Brazilian Conference on
Programming Languages (SBLP), number 8129 in LNCS, pages 135–
149. Springer-Verlag, 2013.

[14] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidi-
rectionalization transformation based on automatic derivation of view
complement functions. In Procs. of ACM SIGPLAN International
Conference on Functional Programming (ICFP), pages 47–58. ACM,
2007.

[15] A. Middelkoop, A. Dijkstra, and S. D. Swierstra. Iterative type infer-
ence with attribute grammars. In Procs. of Generative Programming
and Component Engineering (GPCE), pages 43–52. ACM, 2010.

[16] T. Reps and T. Teitelbaum. The Synthesizer Generator. Springer-
Verlag, 1989.

[17] A. M. Sloane, L. C. L. Kats, and E. Visser. A pure object-oriented
embedding of attribute grammars. Electronic Notes on Theoretical
Computer Science, 253(7):205–219, 2010.

[18] E. Söderberg. Contributions to the Construction of Extensible Seman-
tic Editors. PhD thesis, Lund University, Sweden, 2012.

[19] E. Söderberg and G. Hedin. Circular higher-order attribute grammars.
In Procs. of Software Language Engineering (SLE), number 8225 in
LNCS, pages 302–321. Springer-Verlag, 2013.

[20] P. Stevens. A landscape of bidirectional model transformations. In
Generative and Transformational Techniques in Software Engineering
II, number 5235 in LNCS, pages 408–424. Springer-Verlag, 2008.

[21] D. Swierstra, P. Azero, and J. Saraiva. Designing and Implementing
Combinator Languages. In Advanced Functional Programming, num-
ber 1608 in LNCS, pages 150–206. Springer-Verlag, 1999.

[22] S. d. Swierstra and O. Chitil. Linear, bounded, functional pretty-
printing. Journal of Functional Programming, 19(1):1–16, 2009.

[23] E. Van Wyk, L. Krishnan, A. Schwerdfeger, and D. Bodin. Attribute
grammar-based language extensions for Java. In Proc. of European
Conf. on Object Oriented Prog. (ECOOP), volume 4609 of LNCS,
pages 575–599. Springer-Verlag, 2007.

[24] E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan. Silver: an extensible
attribute grammar system. Science of Computer Programming, 75(1–
2):39–54, 2010.

[25] M. Viera, D. Swierstra, and A. Middelkoop. UUAG meets AspectAG:
How to make attribute grammars first-class. In Procs. of Language
Descriptions, Tools, and Applications (LDTA), pages 6:1–6:8. ACM,
2012.

[26] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute
grammars. In Proc. of Programming Language Design and Implemen-
tation (PLDI), pages 131–145. ACM, 1989.

[27] D. M. Yellin. Attribute Grammar Inversion and Source-to-source
Translation. Number 302 in LNCS. Springer-Verlag, 1988.

